The Process of Chemical Reactions, Equilibrium, Proteins, and Enzymes

http://preparatorychemistry.com/Bishop_Book_atoms_14.pdf

http://preparatorychemistry.com/Bishop_Book_atoms_15.pdf

400

- 300

100

Collision Theory

Reactants must collide

- collision brings contact between reactants
- collision provides energy to break bonds

Bond Breaking and Making

An oxygen atom collides with an ozone molecule.

The collision causes an O-O bond in the ozone to begin breaking as a new O-O bond begins to form.

Bond making, (supplies some energy) Bond breaking (requires energy)

Initially, the energy required for bond breaking is greater than the energy supplied from bond making. The extra energy necessary for the reaction comes from the kinetic energy of the colliding particles.

Formation of Activated Complex

Formation of Product

+

Beyond some point in the reaction, bond making predominates over bond breaking.

Bond making supplies more energy than is necessary for bond breaking...

so energy is released

Energy

Reactions must have a minimum activation energy....if too little, no change

If a rolling ball does not have enough energy to get to the top of a hill, it stops and rolls back down.

Collision Energy and Activation Energy

Collisions with a net kinetic energy greater than the activation energy can react. Collisions with a net kinetic energy less than the activation energy cannot react.

Reactions must have a minimum activation energy... if enough, change

If a ball reaches the top of a hill before its energy is depleted, it will continue down the other side. Energy Diagram for O/O₃ Reaction

Endogonic Reactions

Orientation

One favorable orientation

One unfavorable orientation

Summary (part 1)

• The reactant particles must collide.

 The collision brings together the atoms that will form the new bonds, and the kinetic energy of the particles provides energy for the reaction to proceed.

200

100

Summary (part 2)

 The collision must provide at least the minimum energy necessary to produce the activated complex.

-200

100

 It takes energy to initiate the reaction by converting the reactants into the activated complex. If the collision does not provide this energy, products cannot form.

Summary (part 3)

- The orientation of the colliding particles must favor the formation of the activated complex, in which the new bond or bonds are able to form as the old bond or bonds break.
 - Because the formation of the new bonds provides some of the energy necessary to break the old bonds, the making and breaking of bonds must occur more or less simultaneously. This is only possible when the particles collide in such a way that the bond-forming atoms are close to each other.

200

100

Temperature and Rate of Reaction

Increased Concentration of One Reactant

Concentration and Rates of Reaction

Increased concentration of reactant (Increased number of particles per unit volume)

Decreased average distance between particles and decreased volume available in which to move without colliding

Increased number of collisions between reactants per liter per second

Increased number of particles fulfilling the requirements for reaction

Increased rate of reaction

Catalyzed O/O₃ Reaction

Catalysts and Rate of Reactions

The catalyst provides an alternate pathway with a lower activation energy.

A greater fraction of collisions have the activation energy.

A greater fraction of collisions lead to products.

Increased rate of reaction

Heterogeneous Catalysis

Step 1 - The reactant molecules are adsorbed, and the bonds are weakened.

Step 2 - The atoms migrate across the catalyst.

Step 3 - New bonds form.

Step 4 - The products leave the catalyst.

Maltose

Maltose (glucose and glucose)

Amino Acids

$\begin{array}{c} H \\ \oplus \\ H_3N - C - CO_2 \\ \hline \\ CH_3 \end{array}$

Formation of Ala-Ser-Gly-Cys

Protein -Bovine Pancreatic Trypsin Inhibitor (BPTI)

Primary and Secondary Protein Structures

- Primary Structure = the sequence of amino acids in the protein
- The arrangement of atoms that are close to each other in the polypeptide chain is called the secondary structure of protein.
 - -Three types
 - α-helix
 - β-sheet

-200

-100

irregular

α-helix - Secondary Structure

Ball-and-stick model of a portion of the α-helical secondary structure of a protein molecule

This ribbon model shows the general arrangement of atoms in a portion of the α-helical secondary structure of a protein molecule.

The two models superimposed

β-Sheet Secondary Structure

Tertiary Protein Structure

- The very specific overall shape of the protein called its *tertiary structure*.
- The protein chain is held in its tertiary structure by interactions between the side chains of its amino acids.
 - Disulfide bonds
 - Hydrogen bonds
 - Salt bridges

-200

-100

Disulfide Bonds in Proteins

Hydrogen Bonding in Proteins

The Ribbon **Structure** of the **Protein BPTI**

The Formation of Maltose

Maltose

Active site of enzyme

Enzymes

- Enzymes are naturally occurring catalysts. *Catalysts* speed chemical changes without being permanently altered themselves.
- The chemicals that they act on are called *substrates*.
- Very specific due to

- 300

-200

-100

- Shape "Lock and Key"
- Positions of binding groups, which attract substrates to the active site, the portion of the enzyme where the reaction occurs.
- Positions of the catalytic groups that speed the reaction.

Enzymes Speed Chemical Reactions

 Provide a different path to products that has more stable intermediates and therefore requires less energy.

300

100

• Give the correct orientation every time.

Chymotrypsin - Step 1 enzyme active site

Chymotrypsin - Step 2

enzyme active site CH₂ .0 Ser — CH₂ — Ö 195 His 57 Asp 102

enzyme active site

Chymotrypsin - Step 3

enzyme active site

Chymotrypsin - Step 4

Chymotrypsin - Step 5 enzyme active site

Chymotrypsin - Step 6 enzyme active site

Rates of Reaction for Reversible Reactions

Ski Shop Analogy for Equilibrium

Equilibrium (No change in the number of skis in the shop and on the slope)

Equilibrium Constant

aA + bB + ... \Rightarrow eE + fF + ... Equilibrium constant = $K_C = \frac{[E]^e [F]^f ...}{[A]^a [B]^b ...}$

Equilibrium constant = $K_P = \frac{P_E^e P_F^f \dots}{P_A^a P_B^b \dots}$

Equilibrium Constant Expression

 $CH_4(g) + H_2O(g) \implies CO(g) + 3H_2(g)$

The coefficient before H_2 is 3, so we raise the concentration or pressure to the third power.

 $K_C = \frac{[CO] [H_2]^3}{[CH_4] [H_2O]}$

 $K_P = \frac{P_{CO} P_{H_2}^3}{P_{CH_4} P_{H_2O}}$

Double the moles of P_4 , Cl_2 , and PCl_3

Constant volume

Concentration of gas doubles. Double $\frac{\text{mol } Cl_2}{L}$

Concentrations of solid and liquid remain constant.

Heterogeneous Equilibrium

Concentration of gas
doubles.
Double
$$\frac{\text{mol } \text{Cl}_2}{\text{L}}$$

Concentrations
of solid and liquid
remain constant.
Same $\frac{\text{mol } \text{P}_4}{\text{L}}$
Same $\frac{\text{mol } \text{PCl}_3}{\text{L}}$

Equilibrium Constant Expressions for Heterogeneous Equilibria

 $SO_2(g) + 2H_2S(g) \implies 3S(s) + H_2O(g)$

The solid does not appear in the K_C and K_P expressions.

Extent of Reaction

K > 10^2 Products favored at equilibriumK < 10^{-2} Reactants favored at equilibrium $10^{-2} < K < 10^2$ Neither reactants nor products
favored

Effect of Increased Concentration on Equilibrium

 $H_2O(g) + CO(g) \Rightarrow H_2(g) + CO_2(g)$

Change in Rates When Reactant Added

Ski Shop Analogy 2

Immediately after buying more skis

There are 22 skis in the shop. (With more skis in the shop, more are rented per hour.)

More skis leave than return, so the equilibrium is disrupted.

Later

There are 18 skis in the shop. (This is more skis than before the purchase but fewer than immediately after the purchase.).

New equilibrium (No change in the number of skis in the shop and on the slope)

Effect of Decreased Concentration on Equilibrium

 $H_2O(g) + CO(g) \Rightarrow H_2(g) + CO_2(g)$

Change in Rates When Product Removed

Time

Le Chatelier's Principle

300

200

100

 If a system at equilibrium is altered in a way that disrupts the equilibrium, the system will shift in such a way as to counter the change.