An Introduction to Organic Chemistry and Chemical Weapons

http://preparatorychemistry.com/Bishop_Book_atoms_15.pdf

- 300

-200

Organic Chemistry

• Organic chemistry is the chemistry of carbon-based compounds.

-200

- There are two reasons why there are millions of organic chemicals.
 - Carbon atoms can form strong bonds to other carbon atoms and still form bonds to atoms of other elements.
 - There are many different ways to arrange the same atoms in carbonbased compounds.

Ways to Describe Organic Compounds

Lewis structures

Н

 Condensed Formulas CH₃CH(CH₃)CH₃

Line Drawings

-300

-200

Alkanes - Hydrocarbons (compounds composed of carbon and hydrogen) in which all of the carboncarbon bonds are single bonds

2,2,4-trimethylpentane, CH₃C(CH₃)₂CH₂CH(CH₃)CH₃

Alkenes - Hydrocarbons that have one or more carbon-carbon double bonds

2-methylpropene (isobutene), CH₂C(CH₃)CH₃

Alcohols - compounds with one or more -OH groups attached to a hydrocarbon group

Glycerol, HOCH₂CH(OH)CH₂OH

Chemical Weapons (CW)

 Chemical weapons are "man-made, supertoxic chemicals that can be dispersed as a gas, vapor, liquid, aerosol (a suspension of microscopic droplets), or adsorbed onto a fine talcum-like powder to create *dusty* agents." (Jonathan Tucker)

- 300

-200

100

Special gas mask for dogs-1917

Classification of Chemical Weapons

- Lethal agents kill quickly with small quantities
 - Nerve agents (e.g. sarin and VX)
 - Blood agents (e.g. hydrogen cyanide)

Incapacitants

-200

100

- Choking agents (e.g. chlorine or phosgene)
- Blistering agents (e.g. sulfur mustard)
- Tearing agents (e.g. CS)
- Opiate-like agents (e.g. fentanyl)
- Psychochemical Incapacitants (e.g. BZ)

Choking Agents

- Diphosgene, phosgene, chlorine, chloropicrin
- Mode of Action: Inhalation
- Physiological Effects

ar

- Agent inhaled into lungs
- Fluid builds up in lungs & victim chokes on own fluid
- "Dry land drowning"
- Victim can die of oxygen deficiency
- Form When Disseminated: Gas
- Required Defensive Gear: Protective Mask

Blister Agents (Vesicants)

- **Sulfur mustard**, nitrogen mustard, phosgene oxime, Lewisite
- Mode of Action: Inhalation, Skin Contact
- Physiological Effects
 - Burns skin, mucous membranes, and eyes, causing large water blisters on exposed skin
 - Causes damage primarily to upper airways
 - Primarily used to cause medical casualties, but can be lethal when large amounts are inhaled
- Form When Disseminated: Liquid, Aerosol, Vapor, Dust
- Required Defensive Gear: Protective Mask & Clothing

Sulfur Mustard Gas, H or HD CI CI

- Although it was first made in the 19th century, it was developed by Haber and other German chemists to be used as a weapon.
- Called "mustard" because of its horseradish- or garlic-like smell.
- It is fat-soluble, so it dissolves in the oils in the skin, causing severe chemical burns and blisters.

http://chemapps.stolaf.edu/jmol/jmol.php? model=CICCSCCCI

Effect of Sulfur Mustard on DNA

Sulfur mustard forms a sulfonium ion, which attaches to the guanine nucleotide of DNA, disrupting cell division and function. This can lead to cellular death or cancer.

Nucleic Acids

- Encode and transmit genetic information.
- They include DNA (deoxyribonucleic acid) and RNA (ribonucleic acid).
- Nucleic acids were named for their initial discovery within the cell nucleus, and for the presence of phosphate groups (related to phosphoric acid).
- Found in all life forms.
- All living cells and organelles contain both DNA and RNA, while viruses contain either DNA or RNA, but usually not both.

Nucleotides

 Nucleic acids are polymers of repeating nucleotides, each of which contains a pentose sugar (ribose or deoxyribose), a phosphate group, and a nucleobase.

DNA, Deoxyribonucleic Acid

- **Deoxyribonucleic acid** (**DNA**) is a nucleic acid containing the genetic instructions used in the development and functioning of all known living organisms (with the exception of RNA viruses).
- The DNA segments carrying this genetic information are called genes.
- Double helix two long polymers of repeating nucleotides.
- Backbones made of sugars and phosphate groups.
- Attached to each sugar is one of four types of molecules called nucleobases (informally called *bases*).
- Sequence of these four nucleobases encodes information and specifies the sequence of the amino acids linked together to form proteins.

DNA

Base Pairing

• The guanine nucleobase links to the cytosine nucleobase by hydrogen bonds.

Base Pairing

• The adenine nucleobase links to the thymine nucleobase by hydrogen bonds.

DNA Double Helix

DNA Replication

- One double-stranded DNA molecule produces two identical copies of the molecule.
- Occurs in all living organisms
- Basis for biological inheritance.

RNA, Ribonucleic Acid

- All cellular organisms use messenger RNA (mRNA) to carry the genetic information that directs the synthesis of proteins.
- Many viruses use RNA instead of DNA as their genetic material.
- Transfer RNA (tRNA) molecules to deliver amino acids to the ribosome, where ribosomal RNA (rRNA) links amino acids together to form proteins.
- Differences from DNA
 - RNA contains the sugar *ribose*, while DNA contains the slightly different sugar *deoxyribose* (a type of ribose that lacks one oxygen atom)
 - RNA has the nucleobase uracil while DNA contains thymine.
 - Unlike DNA, most RNA molecules are single-stranded and can adopt very complex three-dimensional structures.

DNA and RNA

DNA to mRNA Transcription

Transcription is the process of creating a complementary RNA copy of a sequence of DNA. (RNAP = RNA polymerase)

Protein Synthesis

Genetic Engineering

- Genetic engineering, also called genetic modification, is the direct manipulation of an organism's genome.
- Introduction of foreign DNA or synthetic genes into the organism of interest.
- Recombinant DNA (rDNA) molecules are DNA sequences that result from bringing together genetic material from multiple sources, creating sequences that would not otherwise be found in biological organisms.
- It's possible because DNA molecules from all organisms share the same chemical structure; they differ only in the sequence of nucleotides.
- The foreign DNA is replicated along with the host DNA.

Genetic Engineering

• The first organisms genetically engineered were bacteria in 1973 and then mice in 1974. Insulin-producing bacteria were commercialized in 1982 and genetically modified food has been sold since 1994.

• Uses

- Medicines such as insulin and human growth hormone are now produced in bacteria.
- Insect resistant and/or herbicide tolerant crops have been commercialized.
- Genetically engineered plants and animals capable of producing biotechnology drugs more cheaply than current methods (called *pharming*) are being developed.

Blood Agents

ar

- Hydrogen cyanide, cyanogen chloride, and arsine
- Mode of Action: Inhalation
- Physiological Effects of Cyanide
 - Destroys ability of tissues to utilize oxygen
- Form When Disseminated: Gas
- Required Defensive Gear:
 Protective Mask

Hydrogen Cyanide, HCN $H-C \equiv N$:

- Volatile liquid boiling point 26 °C (79 °F)
- Used in industry to make many important chemicals
- Fatal at concentrations as low as 300 mg/m³ in air.
- Schedule 3, Part A of the CWC
- Disrupts cellular respiration (the conversion of nutrients and oxygen into carbon dioxide, water, and energy) by inhibiting an enzyme (cytochrome oxidase) in mitochondria.
- Leads to dizziness, vomiting, loss of consciousness, and death
- Most made from the following reaction at 1200 °C over a platinum catalyst.

 $2CH_4 + 2NH_3 + 3O_2 \rightarrow 2HCN + 6H_2O$

Maltose

Maltose (glucose and glucose)

Amino Acids

$\begin{array}{c} H \\ \oplus \\ H_3N - C - CO_2 \\ \hline \\ CH_3 \end{array}$

Formation of Ala-Ser-Gly-Cys

 $H - \dot{N} - \dot{C} - \ddot{C} - \ddot{N} - \dot{C} - \ddot{C} - \ddot{O} - \dot{H} + 3H_2O$ $H - \dot{N} - \dot{C} - \ddot{C} - \ddot{N} - \dot{C} - \ddot{C} - \ddot{N} - \dot{C} - \ddot{C} - \ddot{O} - \dot{H} + 3H_2O$ $H - \dot{H} -$

Protein -Bovine Pancreatic Trypsin Inhibitor (BPTI)

Primary and Secondary Protein Structures

- Primary Structure = the sequence of amino acids in the protein
- The arrangement of atoms that are close to each other in the polypeptide chain is called the secondary structure of protein.
 - -Three types
 - α-helix
 - β-sheet

-200

-100

irregular

α-helix - Secondary Structure

Ball-and-stick model of a portion of the α-helical secondary structure of a protein molecule

This ribbon model shows the general arrangement of atoms in a portion of the α-helical secondary structure of a protein molecule.

The two models superimposed

β-Sheet Secondary Structure

Tertiary Protein Structure

- The very specific overall shape of the protein called its *tertiary structure*.
- The protein chain is held in its tertiary structure by interactions between the side chains of its amino acids.
 - Disulfide bonds
 - Hydrogen bonds
 - Salt bridges

-200

Disulfide Bonds in Proteins

Hydrogen Bonding in Proteins

The Ribbon **Structure** of the **Protein** BPTI

The Formation of Maltose

Maltose

Active site of enzyme

Enzymes

- Enzymes are naturally occurring catalysts, primarily composed of protein. Catalysts speed chemical changes without being permanently altered themselves.
- The chemicals that they act on are called *substrates*.

Active site of enzyme

Enzymes

- 300

-200

- Very specific due to
 - Substrate shape "Lock and Key"
 - Positions of binding groups, which attract substrates to the active site.
 - Positions of the catalytic groups that speed the reaction.
- Speed chemical reactions because
 - Provide a different path to products that has more stable intermediates and therefore requires less energy.
 - Give the correct orientation every time.

Nerve Agents

- Tabun, sarin, soman, cyclosarin, VX, Novichok
- Modes of Action: Contact, Inhalation
- Physiological Effects
 - Disrupt the mechanism by which nerves transfer messages to organs
 - Causes seizures and loss of body control
 - Exhausts muscles, including heart and diaphragm
 - Lethal dose can cause death from respiratory failure in five minutes
- Form When Disseminated: Liquid, Vapor, Aerosol
- Required Defensive Gear: Protective Mask & Clothing

Nerve Agents

-200

100

- Cause contraction of pupils, profuse salivation, convulsions, involuntary urination and defecation, and eventual death by asphyxiation as control is lost over respiratory muscles.
- U.S. and the Soviet Union developed and stockpiled large quantities of nerve agents in a chemical arms race that mirrored the nuclear arms race.

Nerve Agents

- Discovered accidentally by German chemists developing pesticides.
 - Germany had the world's most advanced chemical industry.
 - Searching for new organophosphate pesticides
- Made many variations of the structure and tested them for potency.
- One compound found to be very dangerous and therefore considered "taboo" (tabu in German)...called Tabun.

One Way to Do Science

- Trial-and-error based on previous experience.
- Steps taken by the German Gerhard Schrader working for the IG Farben chemical company and trying to make new pesticides.
 - Fluorine compounds are known to be toxic, so synthesized many different organic compounds with fluorine and tested them for toxicity to insects and safety for humans.
 - After no luck, tried adding first sulfur, then phosphorus, making a series of "organophosphate" compounds with promising characteristics.
 - To make the organophosphates more toxic, he added the cyanide group, which was known to be toxic, leading to tabun.
 - Noticed the adverse effects on himself after making it in the laboratory.

- Developed by the Germans in 1939
- Named for four scientists who were important in its discovery...Schrader and Ambros of IG Farben and Rudiger and Linde or the German Army Ordinance Office
- Odorless
- Adopted as the standard nerve agent for the U.S. in 1948.

http://chemapps.stolaf.edu/jmol/jmol.php?model=FP%28%3DO%29%28OC%28C%29C%29C

- If sarin does not have a high purity, it degrades fairly rapidly.
- Its shelf-life can be extended with stabilizers.
- Can be destroyed in a hydrolysis reaction with a water solution of sodium hydroxide.
- A very large amount of sarin has been made, but very little of it has been used.
- Iraq used sarin against Iran and the Kurds in the 1980s.
- Used in the Tokyo Subway attack by Aum Shinrikyo

Neurotransmitters

• Neurotransmitters cause nerve cells to fire.

From http://universe-review.ca/R10-16-ANS.htm

Acetylcholine and Muscle Contraction

• Among other things, the neurotransmitter acetylcholine stimulates nerve cells that cause muscle contraction.

From Nature 436, 473-474 (28 July 2005)

Acetylcholine, Acetylcholinesterase, and Transfer of Nerve Information

- Normally, acetylcholine is broken down in the active site of an enzyme, acetylcholinesterase.
- Each enzyme molecule converts about 25,000 molecules of acetylcholine per second.
- Acetylcholineacetylcholinesterase like an on-off switch for muscles

Sarin and Acetylcholine-Acetylcholinesterase

- Sarin forms a covalent bond to a serine side chain in the active site of acetylcholinesterase, deactivating it.
- If acetylcholinesterase is deactivated, the acetylcholine levels remain high, and the switch gets stuck in the "on" position.

http://preparatorychemistry.com/nerve_agent_sarin.html

- 300

-200

100

Effects of Nerve Gases

- For skeletal muscles: uncontrolled spasms, followed by paralysis
- For involuntary muscles: pupil contraction, excessive salivation, intestinal cramps, vomiting, and constriction of bronchial tubes
- For central nervous system: overstimulates the brain, causing seizures
- Causes glands to be overactive, secreting excess nasal mucus, saliva, and sweat
- Causes death by asphyxiation through constriction of bronchial tubes, suppression of the respiratory center of the brain, and paralysis of the breathing muscles

Nerve Gas Antidotes - Atropine

- Standard antidote for organophosphate poisoning
- Used in ancient Greece to dilate pupils (to make women's eyes prettier)
- Competes successfully with one type of acetylcholine receptors. This type of receptor is found in smooth muscles and glands.
- Helps relax muscles
- Stops the symptoms from nerve agent poisoning, not the cause

Nerve Gas Antidotes - PAM

- Pralidoxime (2-pyridine aldoxime methyl chloride,) or 2-PAM
- Removes the nerve agent from the active site of acetylcholinesterase, restoring the enzyme to more normal levels
- Too slow to work well alone
- Works best when administered with atropine, which acts more quickly, giving the slower-acting PAM time to work.
- Does not make it through the blood-brain barrier, so does not alleviate problems within the central nervous system. Alternatives are being developed.

Nerve Gas Antidotes

- Atropine and PAM can be administered with a pressurized syringe with a spring-loaded, recessed needle.
- A catch is released and when the syringe is pressed against the leg, the spring is released, pushing the needle through clothing and into the leg, releasing the antidote.

