Acids, Bases, pH, Acid Rain, and Ocean Acidification

http://preparatorychemistry.com/Bishop_Book_atoms_6.pdf

http://preparatorychemistry.com/Bishop_Book_atoms_8.pdf

http://preparatorychemistry.com/Bishop_Book_atoms_13.pdf

400

- 300

-200

Arrhenius Acid Definition

- An acid is a substance that generates hydronium ions, H₃O⁺ (often described as H⁺), when added to water.
- An acidic solution is a solution with a significant concentration of H₃O⁺ ions.

- 300

Characteristics of Acids

- Acids have a sour taste.
- Acids turn litmus from blue to red.
- Acids react with bases.

Strong Acid and Water

When HCI dissolves in water, hydronium ions, H_3O^+ , and chloride ions, CI^- , ions form.

Solution of a Strong Acid

Types of Acids

- Binary acids have the general formula of HX(aq)
 - HF(aq), HCI(aq), HBr(aq), and HI(aq)
- Oxyacids have the general formula $H_a X_b O_c$.
 - $-HNO_3$ and H_2SO_4

- 400

- 300

200

• Organic (carbon-based) acids $-HC_2H_3O_2$

Acetic Acid

Monoprotic and Polyprotic Acids

- If each molecule of an acid can donate one hydrogen ion, the acid is called a monoprotic acid.
- If each molecule can donate two or more hydrogen ions, the acid is a polyprotic acid.
- A diprotic acid, such as sulfuric acid, H₂SO₄, has two acidic hydrogen atoms.
- Some acids, such as phosphoric acid, H₃PO₄, are triprotic acids.

-200

Strong and Weak Acids

- Strong Acid = due to a completion reaction with water, generates close to one H₃O⁺ for each acid molecule added to water.
- Weak Acid = due to a reversible reaction with water, generates significantly less than one H₃O⁺ for each molecule of acid added to water.

- 300

Weak Acid and Water

Acetic acid reacts with water in a reversible reaction, which forms hydronium and acetate ions.

Solution of Weak Acid

In a typical acetic acid solution, there are about 250 times as many uncharged acetic acid molecules, $HC_2H_3O_2$, as acetate ions, $C_2H_3O_2^-$.

For every 250 molecules of the weak acid acetic acid, HC₂H₃O₂, added to water, there are about

For every 250 molecules of the strong acid hydrochloric acid, HCl, added to water, there are about

Strong

and

Weak

Acids

Zero uncharged HCl molecules 250 chloride ions 250 hydronium ions Image: Strate in the st		HCl(g)	+	$H_2O(l)$	\rightarrow	Cl-	(aq)	+	Н	$_{3}\mathrm{O}^{+}(a)$	q)	
	Zero u	ncharged HCl	molecı	ıles		250 chlor	ide ions	-	250 hydr	onium	ion	\$
	Zero u	ncharged HCl	molecu	iles		250 chlor	ide ions		250 hydr	onium	1' ion i a a i a i	S
))))))))))	333333 33) 33 33				

Sulfuric Acid

 $H_2SO_4(aq) + H_2O(l) \rightarrow H_3O^+(aq) + HSO_4^-(aq)$

 $HSO_4^{-}(aq) + H_2O(I) \Rightarrow H_3O^{+}(aq) + SO_4^{2-}(aq)$

Acid Summary

Binary acid

Strong hydrochloric acid, HCI(aq) Weak hydrofluoric acid

Oxyacid

nitric acid, HNO_3 sulfuric acid, H_2SO_4 other acids with $H_a X_b O_c$

Organic acid none

acetic acid, $HC_2H_3O_2$

Arrhenius Base Definitions

- A base is a substance that generates OH⁻ when added to water.
- A basic solution is a solution with a significant concentration of OH⁻ ions.

300

Characteristics of Bases

- Bases have a bitter taste.
- Bases feel slippery on your fingers.
- Bases turn litmus from red to blue.
- Bases react with acids.

300

-200

Strong Bases

- 300

-200

- Strong Base = due to a completion reaction with water, generates close to one (or more) OH⁻ for each formula unit of base added to water.
 - Metal hydroxides are strong bases.

Ammonia and Water

Ammonia reacts with water in a reversible reaction, which forms ammonium and hydroxide ions.

Weak Base

- 300

-200

- Weak Base = due to a reversible reaction with water, generates significantly less than one OH⁻ for each formula unit of base added to water.
 - Ammonia and ionic compounds that contain CO_3^{2-} or HCO_3^{-} are weak bases.

Ammonia Solution

Carbonate Bases

 $Na_{2}CO_{3}(s) \rightarrow 2Na^{+}(aq) + CO_{3}^{2-}(aq)$ $CO_{3}^{2-}(aq) + H_{2}O(I) \rightleftharpoons HCO_{3}^{-}(aq) + OH^{-}(aq)$

NaHCO₃(s) \rightarrow Na⁺(aq) + HCO₃⁻(aq) HCO₃⁻(aq) + H₂O(I) \rightleftharpoons H₂CO₃(aq) + OH⁻(aq)

Arrhenius Bases

Strong	Weak
--------	------

IonicMetalIonic compoundsCompoundshydroxideswith CO_3^{2-} and HCO_3^{-}

Certain None NH₃

Uncharged

molecules

pН

- 300

-200

100

 Basic solutions have pH values greater than 7, and the more basic the solution is, the higher its pH.

pH Range

Acid Deposition

Wet Deposition (acid rain, snow)

- Easy to measure; about half of acid deposition
- First measured in 1852 in England
- No widespread attention until 1961, when Swedish scientists hypothesized that declining fish populations (and, later, forest damage) might be caused by acid rain from coal-burning regions of Europe.
- By 1980, recognized as a major environmental problem in industrialized countries.

Acid Deposition

Dry deposition (acid gases and aerosols)

- Difficult to measure; importance recognized only in 1980s
- Main form of acid deposition near source
- Main cause of damage to foliage?

Droplet deposition (acid fogs)

- Generally less important than wet and dry deposition, except in certain locations
- Highest measured acidities, but total dose small

Acids and Acid Precursors

- Sulfur dioxide (SO₂) → sulfuric acid (H₂SO₄)
 primarily from coal burning and smelting
- Nitrogen oxides (NO, NO₂) → nitric acid (HNO₃)
 - primarily from high-temperature combustion
- Formic and acetic acids (HCO₂H, CH₃CO₂H)
 - primarily from biomass burning, mostly in Africa and South America
- Carbonic acid ($CO_2 \rightarrow H_2CO_3$)
 - from CO₂ in atmosphere, responsible for acidity of pristine precipitation

Sources of Sulfur Dioxide (SO₂)

Anthropogenic

- Coal-burning in power plants
- Oil-burning (vehicles)
- Industrial (smelting, etc.); responsible for intense local damage
- Biomass burning

Natural

volcanoes

• In water solution, sulfur dioxide dissolves in water to form sulfurous acid, which can go on to form sulfuric acid.

 $SO_2 + H_2O \Rightarrow H_2SO_3$

 $H_2SO_3 + H_2O_2 \rightarrow H_2SO_4 + H_2O$

 In the gas phase, sulfur dioxide can form sulfuric acid, H₂SO₄.

 $SO_2 + OH \rightarrow HOSO_2$ $HOSO_2 + O_2 \rightarrow HO_2 + SO_3$ $SO_3(g) + H_2O(I) \rightarrow H_2SO_4(I)$

Sulfurous and Sulfuric Acid Ionizations

- Sulfuric acid and sulfurous acid form hydronium ions $H_2SO_4 + H_2O \rightarrow H_3O^+ + HSO_4^ HSO_4^- + H_2O \rightleftharpoons H_3O^+ + SO_4^{2-}$ $H_2SO_3 + H_2O \rightleftharpoons H_3O^+ + HSO_3^ HSO_3^- + H_2O \rightleftharpoons H_3O^+ + SO_3^{2-}$
- The pH can drop to 4.3 or lower.

Contribution of U.S. Emissions to Total S Deposition in Canada

Wet Sulfate Deposition: 1994

National Atmospheric Deposition Program/National Trends Network http://nadp.sws.uiuc.edu

Average pH of Rainfall: 1999

Hydrogen ion concentration as pH from measurements made at the field laboratories, 1999

http://nadp.sws.uiuc.edu

Sources of Nitrogen Oxides (NOx)

Anthropogenic

- Fossil-fuels
 - vehicles (45% US)
 - power plants (35% US)
- Biomass burning
- Agricultural soils
 Natural
- Lightning
- Soils

NO_x is NO and NO₂

- Combustion and other high-temp processes in air (O₂ + N₂) produce NO and NO₂; together they are referred to as "nitrogen oxides" or "NOx"
- 95% of NOx from combustion sources is emitted in the form of NO, but this is quickly oxidized in the atmosphere to NO₂, and so emissions of NOx can be reported as t(NO₂).

NO₂ Emission Density: 2001

Nitric Acid Formation

- Nitric acid formation in gas phase $NO_2 + OH \rightarrow HNO_3$
- HNO_3 formation in water solution $3 NO_2 + H_2O \rightarrow 2 HNO_3 + NO$
- Nitrogen monoxide will oxidize to form nitrogen dioxide that again reacts with water, ultimately forming nitric acid:

4 NO + 3 O_2 + 2 $H_2O \rightarrow$ 4 HNO_3

• Nighttime

 $NO_2 + O_3 \rightarrow NO_3 + O_2$ $NO_3 + NO_2 + M \rightarrow N_2O_5 + M^*$ $N_2O_5 + H_2O \rightarrow 2HNO_3$

Wet Nitrate Deposition: 1994

US NO₂ Emissions, 1940-2002

Sensitive Areas

Source: NAPAP. 1991. 1990 Integrated Assessment Report.

Sensitive Areas

Current problem areas (including lakes and rivers)

Impacts

- Freshwater ecosystems
- Forests
- Agriculture
- Human health
- Buildings and property
- Visibility

Acid Tolerance of Freshwater Animals

	PH 6.5	PH 6 .0	PH 5.5	⊨H 5 .0	PH 4.5	PH 4.0
TROUT						
BASS						
PERCH						
FROGS						
SALAMANDERS						
CLAMS						
CRAYFISH						
SNAILS						
MAYFLY						

Forests and Acid Rain

Human Health

- Acids
 - Consumption of fish with elevated concentrations of toxic metals (Al, Pb, Cd, Hg, Cu, Zn)
 - Corrosion of pipes resulting in excess levels of Cu, Zn, Pb
 - In Adirondacks, Pb levels up to 100× standard
- Acid precursors
 - $-SO_2$ and NO_x are toxic;
 - $-NO_x$ react to form ozone
 - Respiratory and cardiac diseases

Buildings and Property

 Carbonate stones (marble, limestone, etc.), cement, mortar are dissolved by acids: CaCO₃(s) + H₂SO₄(aq)

 \rightarrow CaSO₄(aq) + CO₂(g) + H₂O(I)

- Acids etch glass; damage roofing and other building materials; damage plastics and paint (esp. automotive paint)
- Damage to U.S. buildings: ≈\$5 billion/y

Capitol Building, Ottawa

Marble surfaces develop a rough "sugary" texture because calcite grains are loosened as the edges dissolve

Effects on Metals

Mitigation

- Tall Stacks (export pollution)
- Sulfur
 - Switch from coal to natural gas (0.001% S)
 - Switch to low-sulfur coal
 - S content ranges from 0.3 to 6%; only 8% of US coal would meet 1975 NSPS (<0.7% S)
 - Scrub coal (solvent refining removes up to 75% S)
 - Flue-gas desulfurization (FGD)
 - mix exhaust gas with lime (CaO); SO₂ reacts for form gypsum (CaSO₄)

SO₂ Emissions Reduction

- Due largely to the US EPA's Acid Rain Program, the U.S. had a 33% decrease in SO₂ emissions between 1983 and 2002.
- Partly from flue-gas desulfurization.

Wet SO₂ Scrubber

Flue-Gas Desulfurization

- A technology that enables SO₂ to be removed in power plants burning sulfur-containing coal or oil.
- Wet scrubbing uses a CaCO₃ (limestone) slurry and produces CaSO₃ (calcium sulfite): CaCO₃(s) + SO₂(g) → CaSO₃(s) + CO₂(g)
- When wet scrubbing with a Ca(OH)₂ (lime) slurry, the reaction also produces CaSO₃ is: Ca(OH)₂(s) + SO₂(g) → CaSO₃(s) + H₂O(I)
- When wet scrubbing with a Mg(OH)₂, the reaction produces MgSO₃:

 $Mg(OH)_2(s) + SO_2(g) \rightarrow MgSO_3(s) + H_2O(I)$

 To partially offset the cost of the FGD installation, in some designs, the CaSO₃ is further oxidized to produce marketable CaSO₄ · 2H₂O (gypsum).

 $CaSO_3(s) + \frac{1}{2}O_2(g) \rightarrow CaSO_4(s)$

Mitigation – Coal Gasification

- A gasifier converts hydrocarbon feedstock into gaseous components by applying heat under pressure in the presence of steam.
- Only a relatively small portion of the fuel burns completely. This "partial oxidation" process provides the heat.
- Produce "syngas", primarily hydrogen and carbon monoxide

 $C + H_2O \rightarrow CO + H_2$

 $CO + H_2O \rightarrow CO_2 + H_2$

- Sulfur converted to hydrogen sulfide, H₂S, and carbonyl sulfide, OCS, which can be converted into elemental sulfur or sulfuric acid, both valuable byproducts.
- 99+% of S removed

Coal Gasification

Automobile Catalytic Converters

Catalytic converters: up to 95% reduction in NO_x 2NO \rightarrow N₂ + O₂ 2NO₂ \rightarrow N₂ + 2O₂

1995 SO₂ Emissions

2004 SO₂ Emissions

Oceanic Carbon

- Carbon enters the ocean mainly through solution of atmospheric carbon dioxide.
 CO₂(g) = CO₂(aq)
- The net rate of solution is determined by
 - the rate at which CO₂ molecules collide with the surface of the water and move into the water (R_{soln})
 - the rate at which CO_2 escapes from the water into the atmosphere (R_{escape}), which is determined by the concentration of CO_2 in the water and the temperature of the water.
- If these two rates are equal, the system will be in equilibrium with no net change in the concentrations of CO₂ in the ocean or the atmosphere.

Dynamic Equilibrium for Gas Dissolved in Liquid

Gas Solubility

Partial Pressure and Gas Solubility

- As the concentration of CO_2 in the atmosphere increases, the ocean absorbs more CO_2 .
- Increased concentration of CO_2 in the atmosphere leads to an increase in the rate of collisions with the ocean, increasing the rate of solution, disrupting the dynamic equilibrium, making the $R_{soln} > R_{escape}$, and leading to a net shift of CO_2 into the ocean.

Increased partial pressure of a gas over a liquid in a system initially at dynamic equilibrium (Rate of solution = Rate of escape)

Increased rate of collision between gas particles and liquid \longrightarrow Increased rate of solution Net movement of gas particles into solution \leftarrow Rate of solution greater than rate of escape Increased concentration of solute in solution \longrightarrow Increased rate of escape until it equals the higher rate of solution

CO₂ and Ocean Acidity

- CO₂ molecules react with water to form carbonic acid, which ionizes to form hydronium, hydrogen carbonate, and carbonate ions.
 - $\begin{aligned} &\mathsf{CO}_2(\mathsf{aq}) + \mathsf{H}_2\mathsf{O}(\mathsf{I}) \rightleftharpoons \mathsf{H}_2\mathsf{CO}_3(\mathsf{aq}) \\ &\mathsf{H}_2\mathsf{CO}_3(\mathsf{aq}) + \mathsf{H}_2\mathsf{O}(\mathsf{I}) \rightleftharpoons \mathsf{H}_3\mathsf{O}^+(\mathsf{aq}) + \mathsf{HCO}_3^-(\mathsf{aq}) \\ &\mathsf{HCO}_3^-(\mathsf{aq}) + \mathsf{H}_2\mathsf{O}(\mathsf{I}) \rightleftharpoons \mathsf{H}_3\mathsf{O}^+(\mathsf{aq}) + \mathsf{CO}_3^{-2}(\mathsf{aq}) \end{aligned}$
- The absorption of anthropogenic CO₂ has acidified the surface layers of the ocean, with a steady decrease of 0.02 pH units per decade over the past 30 years and an overall decrease since the pre-industrial period of 0.1 pH units.
- Although these increases appear small in terms of pH, they are associated with a substantial changes in ocean chemistry.

Threat to Coral Reefs

Coral Reefs Under Rapid Climate Change and Ocean Acidification Ove Hoegh-Guldberg, et al, *Science 14 December 2007: Vol. 318 no. 5857 pp. 1737-1742*

Threat to Coral Reefs

Coral Reefs Under Rapid Climate Change and Ocean Acidification Ove Hoegh-Guldberg, et al, *Science 14 December 2007: Vol. 318 no. 5857 pp. 1737-1742*