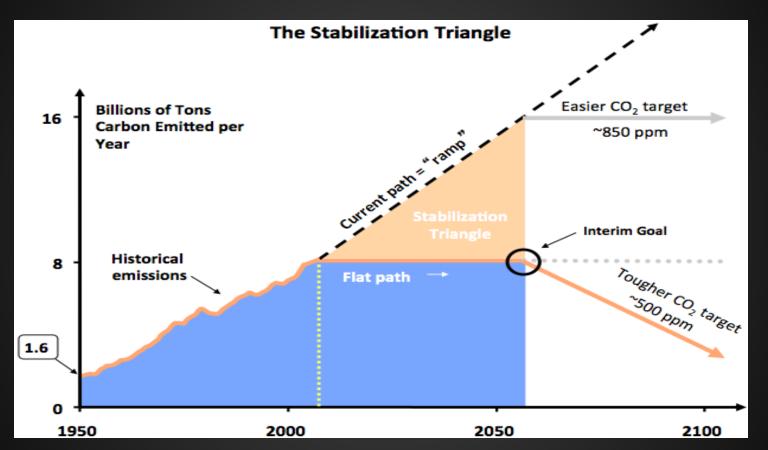
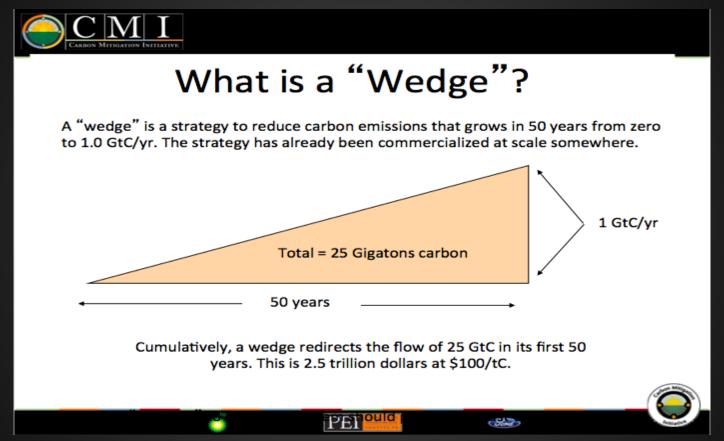
Be the Solution: Climate Change Mitigation Strategies

Kelsey Schueler Noel Mbise Gabriel Kiritz

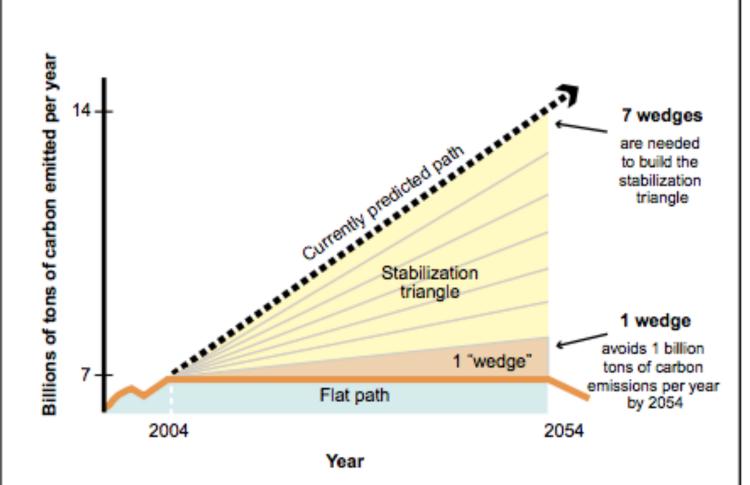

Presentation Outline

- 1. Theories of mitigation
 - a. Socolow's Stabilization Wedges
 - b. McKinsey Abatement Cost Curve
- 2. From theory to practice
- 3. Additional commentary McKibben & Global Warming's New Math

Socolow: "Stabilization Wedges"


- Visualizing climate change mitigation strategies
 - stabilization triangle
 - stabilization wedge
- 15 different strategies covering a portfolio of technology and science that have already been implemented and tested
- Goal = keep atmospheric CO2 (equilibrium concentration) at less than double pre-industrial CO2 concentrations of 280 ppm

Stabilization Triangle


Total CO2 emissions avoided over 50 years if emission rate is stabilized (equilibrium concentration) compared to current projections toward doubling emission

Stabilization Wedge

1 "wedge" grows to reduce emissions by 1 Gt CO2 per year after 50 years. Over the intervening 50 years, 25 Gt CO2 will be avoided

Figure 1b. Stabilization wedges

NOTE: The stabilization triangle in Figure 1a can be divided into seven equal "wedges" that represent activities capable of reducing one billion tons of carbon per year by 2054.

SOURCE: R. Socolow, R. Hotinski, J. B. Greenblatt, and S. Pacala.

Stabilization Strategies & Categories

Five categories to achieve a flat trajectory for emissions, 15 specific strategies:

• Energy Conservation

- Transport efficiency = 0.8 wedge
- Reduced miles traveled
- Building efficiency (direct residential/industrial use)
- Efficiency of electricity production

Renewable Energy

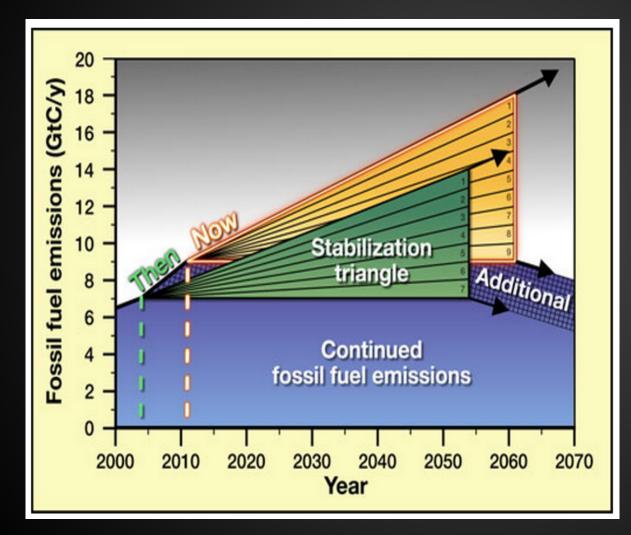
- Electricity: Replacing coal with 50X wind, 700X solar, or 100X geothermal = 1 wedge
- Biofuels: 50X production increase = 1 wedge

Stabilization Strategies & Categories

• Enhanced Natural sinks

- Forest: Stop deforestation = 0.5 wedge, Reforest 300 million hectares = 0.5 wedge
- Soil: Conservation tillage of all global agricultural land = 1 wedge
- Ocean = Uncertainty

• Nuclear energy


- 3X current nuclear power generation = 1 wedge
- Update all nuclear facilities = 0.5 wedege

Stabilization Strategies & Categories

- Fossil Carbon Management
 - Fuel switching (coal to gas): Change the mix of fossil fuels in current global energy market
 - Fossil-based electricity with carbon capture and storage (CCS): Separate stream of CO2 from other products during combustion and prevent it from being released into the atmosphere
 - Coal synfuels with CCS
 - Fossil-based hydrogen fuel with CCS

http://cmi.princeton.edu/wedges/pdfs/climate_problem.pdf

Stabilization Wedges Reaffirmed

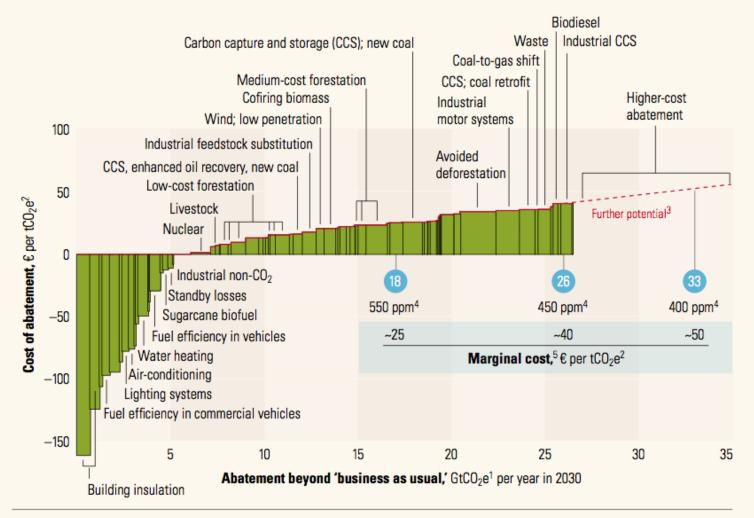
In 2011, Socolow reaffirmed belief that "existing technologies could affordably limit warming"

9 wedges instead of 7

Consequences from delay:

- 1/2° C increase in global surface temp.
- 50 ppm increase in equilibrium concentration.

http://thebulletin.org/web-edition/features/wedges-


McKinsey: "<u>A cost curve for greenhouse gas</u> reduction"

- Alternative strategy to visualize costs and potential abatement through various measures
 - Significance, cost, and relative importance of possible measures
- Calculates marginal cost of various abatement measures (Gt CO2e/y by 2030 up to 40 euro/t)
 - Emissions relative to IEA/EPA business-as-usual projections
- Targets: keep atmospheric concentrations below 550, 450, or 400 ppm CO2 by 2030
 - Reaching any of these would require 50%+ improvement in global greenhouse gas efficiency (emissions/GDP)

What might it cost?

Global cost curve for greenhouse gas abatement measures beyond 'business as usual'; greenhouse gases measured in GtCO2e1

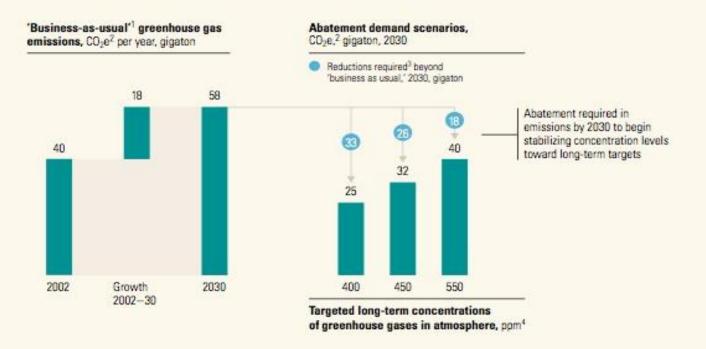
 Approximate abatement required beyond 'business as usual,' 2030

¹GtCO₂e = gigaton of carbon dioxide equivalent; "business as usual" based on emissions growth driven mainly by increasing demand for energy and transport around the world and by tropical deforestation.

²tCO₂e = ton of carbon dioxide equivalent.

³Measures costing more than €40 a ton were not the focus of this study.

⁴Atmospheric concentration of all greenhouse gases recalculated into \dot{CO}_2 equivalents; ppm = parts per million.


⁵Marginal cost of avoiding emissions of 1 ton of CO₂ equivalents in each abatement demand scenario.

Cost Curve Explained...

- Prospective annual marginal cost of abatement per ton of CO2e (euro/t)
 - Only shows measures for which the cost is estimated to be <40 euro/t in 2030
 - e.g. wind power cost = additional cost over fossil fuels
- Abatement potential of each abatement measure (Gt CO2e)
 - Width of each column demonstrates the quantity of CO2e abated
- Why do some measures have a negative cost of abatement?
 - Increased efficiency brings savings but transaction costs & status quo bias reduce the likelihood of implementation for these measures

Three scenarios addressed:

Three scenarios

¹ "Business as usual" based on emissions growth driven mainly by increasing demand for energy and transport around the world and by tropical deforestation.

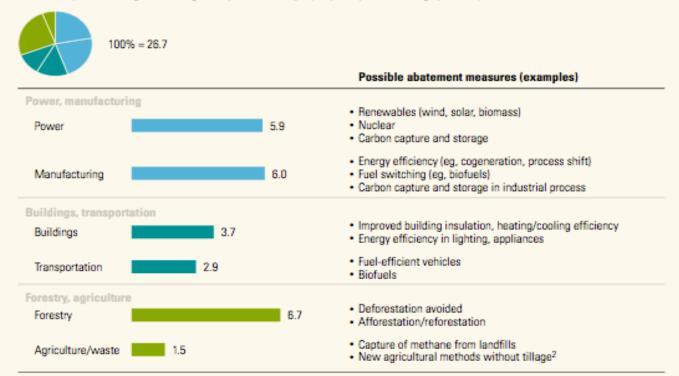
^aCO₂e = carbon dioxide equivalent.

³Reduction requirements = midpoints with uncertainty of +/- several gigatons.

⁴Parts per million.

Source: International Energy Agency (IEA); US Environmental Protection Agency (EPA); McKinsey analysis

Abatement Sectors:

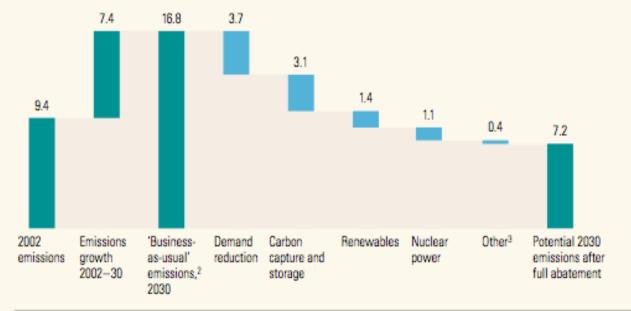

- Power Generation 5.9 Gt CO2e/y
- Manufacturing Industry 6.0
- Residential/Commercial Buildings 3.7
- Transportation 2.9
- Forestry 6.7
- Agriculture/waste disposal 1.5

Abatement potential by sector

EXHIBIT 3

Abatement potential

Abatement potential for greenhouse gases by sector, GtC02e¹ per year by 2030 (costing up to €40 per ton)


¹GtCO₂e = gigaton of carbon dioxide equivalent. ²Reduces CO₂ emissions from soil.

Power sector abatement potential:

EXHIBIT 5

Abatement potential in the power sector

Emissions development and abatement potential in power sector, greenhouse gases measured in $GtCO_2e$ per year by 2030 (costing $\leq \varepsilon 40$ per ton)¹

¹GtCO₂e = gigaton of carbon dioxide equivalent; figures do not sum to x00%, because of rounding.

2"Business as usual" based on emissions growth driven mainly by increasing demand for energy and transport around the world and by tropical deforestation.

³For example, coal-to-gas shift beyond "business as usual," improved efficiency in existing plants; these measures compete with other measures and could have higher impact on abatement in other abatement scenarios.

Cost Curve - Key Findings...

- Low cost measures focus on:
 - improving energy efficiency & lowering energy demand
- High cost measures focus on:
 - more GHG-efficient technologies in power generation/manufacturing & a shift to cleaner industrial processes - e.g. wind power, carbon capture and storage
- Over 25 years, power generation and manufacturing industry can provide less than half of potential reductions
- ~3/4 of potential abatement from technology independent measures or mature technologies

Cost Curve - Key Findings

- Almost 1/4 of potential reductions, according to McKinsey, would have no net life cycle costs
 - If they are free or net positive, why haven't we implemented them yet? Status quo bias, transaction costs (e.g. billions of small emitters in the energy efficiency measures)
- Substantial potential lies with developing economies
- Economic growth strongly correlated with implementation of lowcost measures - cheaper when building new than to retrofit
- Cost for 450 ppm target: 500 billion euro 1,100 billion euro in 2030 (0.6%-1.4% of 2030 global GDP)

Role of developing economies:

EXHIBIT 4

Developing economies will play an important role

100% = 26.7% of global emissions 'Business as After abatement usual.'3 2030 Eastern Europe² 1.6 9 11 Western Europe² 2.58 7 North America 44 15 14 Other developed 2.5 11 13 countries China 4.6 18 18 Other developing 39 37 11.1 countries

Abatement potential for greenhouse gases by region, GtCO2e¹ per year by 2030 (costing up to €40 per ton)

¹GtCO₂e = gigaton of carbon dioxide equivalent.

²Eastern Europe includes former Soviet Ünion and Balkans; Western Europe includes EU25 plus Iceland, Norway, Switzerland, Turkey, minus Baltic states.

3 "Business as usual" based on emissions growth driven mainly by increasing demand for energy and transport around the world and by tropical deforestation.

Cost Curve - Assumptions

- Certain actions have already begun to take place (e.g. wind power) and will continue to scale up
- Significant decrease in cost of certain technologies (e.g. carbon capture/storage dropping to 20-30 euro/t in 2030)
- Significant increase in implementation of key technologies in new factories (e.g. 85% of all new coal-fired power plants from 2020 onward will have CCS)
- Focus would be on all cheapest abatement measures
 - Highly fragmented across sectors & regions collecting all the possible reductions is logistically and politically challenging

Cost Curve - Policy Implications

- Ensure strict energy efficiency standards (prescriptive regulation)
- Establish long-term incentives for adoption of GHG-efficient technologies
- Incentivize/support cost efficiency improvements for key technologies such as carbon capture & storage
- Address agriculture/forestry potential through development mechanisms in developing countries

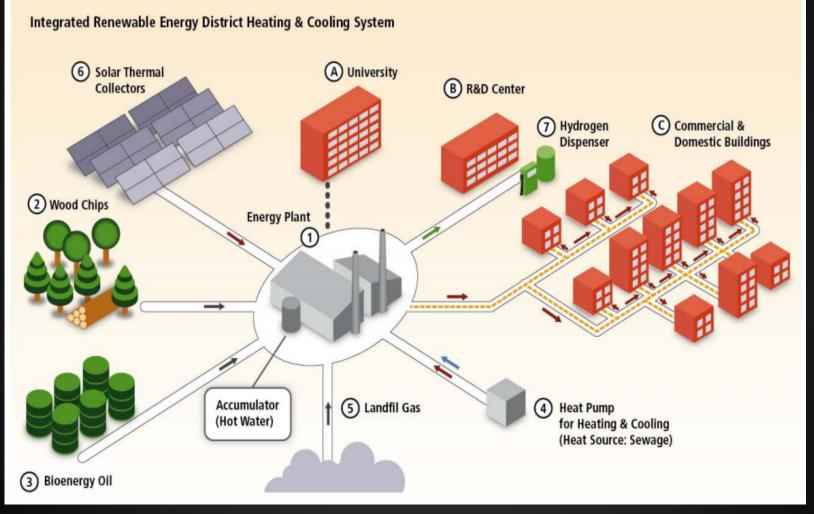
Practical methods

- Supply v. demand side approaches
- Market-based measures v. prescriptive
- Energy solutions
- Sequestration
- Ecosystem-based methods
- Geoengineering: <u>http://grist.org/basics/a-mad-scientists-guide-to-re-engineering-the-planet</u>

Policies for Mitigation Measures

- Practically, mitigation comprises both supply and demand side solutions.
- Requires command and control, market incentives policies or a combination of both
- Such policies should address emission source rather than peripheral aspects e.g. carbon tax vs SUV tax.

Efficiency and conservation


- Policies such as carbon trading or carbon tax can help reduce miles travelled
- Increased building and transport efficiency through command and control policies or special incentives.
- Incentives for buying more energy efficient appliances to reduce consumption and certification systems
- Proper pricing of of energy to influence behaviour

Fossil fuels

- Carbon trading policies to allow major energy users to consider use of cleaner energy
- Use of legal tools to mandate carbon capture and storage for fossil fuel refineries and power plants.
- Use of coal synfuels must be accompanied by CCS technology
- Some major CCS projects in the world include Sleipner(Norway) and Salash (Algeria)

www.cpmi.princeton.edu/wedges

An integrated RE-based energy plant in Lillestrøm, Norway, supplying commercial and domestic buildings

Renewable Energy Sources and Climate Change Mitigation. Special Report of the Intergovernmental Panel on Climate Change

Biostorage

- Enhancing natural sinks is a key strategy to address carbon emission
- Initiatives like REDD and REDD+ will play a key role in reducing deforestation
- Oceans capacity to absorb CO2 are affected by rising temperature and change in pH.
- Implement national and multilateral environmental agreements and initiatives to enhance marine and land conservation
- Agroforestry, organic and no-tilling agriculture will reduce carbon emission and disruption of important biogeochemical cycles such (C, N, S).

Other important measures

- Nuclear energy will be important in the near future as a source of cleaner energy. Efforts to seek safer ways for nuclear energy development must continue.
- Geoengineering could provide viable option for carbon mitigation in the future. However, this option is currently riddled with controversies. (*http://grist.org/basics/a-mad-scientists-guide-to-re-engineering-the-planet/*)
- A global shift to a vegetable based diet will afford the world significant reductions in carbon emission

McKibben: New Math

- 2 Degrees C (3.6 F) thus far, we have raised global average surface temperature by 0.8 C
- 565 Gt CO2 "budget" amount of CO2 we can add to the atmosphere to have 80% chance of staying below 2 C rise (2011 emissions = 31.6 Gt)
- 2,795 Gt CO2 amount of CO2 stored in proven fossil fuel reserves of fossil fuel companies - 5 times our "budget" and economically "above ground" and figured in share prices, budgets, borrowed money
- Russia's Lukoil and America's ExxonMobil (top two) reserves worth 40 Gt CO2 each; top six firms hold >25% of remaining carbon budget

Exam Questions:

- Socolow:
 - What is the "stabilization triangle"?
 - What is a "stabilization wedge"?
 - How has this approach changed over time?
- McKinsey:
 - How does the McKinsey Cost Curve approach climate change mitigation?
 - What are some critiques of the McKinsey Cost Curve?
- Theory to Practice:
 - What sorts of mitigation measures might require prescriptive/command and control regulation? Market-based regulation?
- McKibben:
 - What are the three types of numbers we should be concerned about for mitigating climate change?

References & links

http://www.centerforsustainability.org http://www.c2es.org/ http://www.climatestrategies.us

<u>Stabilization Wedges, 2004</u> <u>Alternative Wedges</u> <u>Socolow on Wedges, 2011</u> <u>McKinsey Report</u> (source for all McKinsey graphs) <u>McKibben: New Math</u> <u>IPCC Report</u>