The Process of Chemical Reactions, Equilibrium, Strong and Weak Acids, and pH

IPOL 8512
Collision Theory

• Reactants must collide

\[\text{O}(g) + \text{O}_3(g) \rightarrow 2\text{O}_2(g) \]

- collision brings contact between reactants
- collision provides energy to break bonds
O(g) + O₃(g) → 2O₂(g)

Particles are constantly changing direction and speeding up or slowing down.
Bond Breaking and Making

An oxygen atom collides with an ozone molecule.

The collision causes an O-O bond in the ozone to begin breaking as a new O-O bond begins to form.

Initially, the energy required for bond breaking is greater than the energy supplied from bond making. The extra energy necessary for the reaction comes from the kinetic energy of the colliding particles.
Formation of Activated Complex

Bond making supplies energy equal to the energy required for bond breaking.
Formation of Product

Beyond some point in the reaction, bond making predominates over bond breaking.

Bond making supplies more energy than is necessary for bond breaking...

Energy

so energy is released
Energy
Diagram
for O/O₃
Reaction
Reactions must have a minimum activation energy...if too little, no change

If a rolling ball does not have enough energy to get to the top of a hill, it stops and rolls back down.
Collision Energy and Activation Energy

Collisions with a net kinetic energy greater than the activation energy can react.

Collisions with a net kinetic energy less than the activation energy cannot react.
Reactions must have a minimum activation energy...if enough, change

If a ball reaches the top of a hill before its energy is depleted, it will continue down the other side.
Endergonic Reactions

A ····· B ····· C
Activated Complex

Bond breaking predominates (energy absorbed)

Bond making predominates (energy released)

Energy before reaction

Overall, energy absorbed in the reaction

Energy after reaction

A + BC

AB + C

Activation Energy
Orientation

One favorable orientation

One unfavorable orientation
Summary

• The reactant particles must collide.
 – The collision brings together the atoms that will form the new bonds, and the kinetic energy of the particles provides energy for the reaction to proceed.

• The collision must provide at least the minimum energy necessary to produce the activated complex.
 – It takes energy to initiate the reaction by converting the reactants into the activated complex. If the collision does not provide this energy, products cannot form.
Summary (part 3)

• The orientation of the colliding particles must favor the formation of the activated complex, in which the new bond or bonds are able to form as the old bond or bonds break.
 – Because the formation of the new bonds provides some of the energy necessary to break the old bonds, the making and breaking of bonds must occur more or less simultaneously. This is only possible when the particles collide in such a way that the bond-forming atoms are close to each other.
Temperature and Rate of Reaction

- Increased temperature
 - Increased average velocity of particles
 - Increased number of collisions between reactants per second
 - Increased number of successful collisions
 - Increased reaction rate
 - Increased average kinetic energy of particles
 - Increased fraction of collisions with the minimum energy to react
 - Increased reaction rate
Increased concentration of one reactant

Increased concentration of oxygen atoms leads to increased rate of collision between oxygen atoms and ozone molecules.
Concentration and Rates of Reaction

Increased concentration of reactant
(Increased number of particles per unit volume)

\[\downarrow \]

Decreased average distance between particles and decreased volume available in which to move without colliding

\[\downarrow \]

Increased number of collisions between reactants per liter per second

\[\downarrow \]

Increased number of particles fulfilling the requirements for reaction

\[\downarrow \]

Increased rate of reaction
Catalyzed O/O₃ Reaction

Uncatalyzed activation energy, 17 kJ

O + O₃ (+ Cl)

Catalyzed reaction

ClO + O₂ (+ O) 0.4 kJ

Note that the catalyst provides an alternate pathway with a lower activation energy.

Uncatalyzed reaction

A portion of each curve has been cut out to maintain the correct proportion between the sections of the diagram.
Catalysts and Rate of Reactions

The catalyst provides an alternate pathway with a lower activation energy.

A greater fraction of collisions have the activation energy.

A greater fraction of collisions lead to products.

Increased rate of reaction
Heterogeneous Catalysis

Step 1 - The reactant molecules are adsorbed, and the bonds are weakened.

Step 2 - The atoms migrate across the catalyst.

Step 3 - New bonds form.

Step 4 - The products leave the catalyst.
Production and Uses of Hydrogen Gas

$$\text{CH}_4(\text{g}) + \text{H}_2\text{O}(\text{g}) \rightleftharpoons \text{CO}(\text{g}) + 3\text{H}_2(\text{g})$$

Chemical plants make a mixture of hydrogen gas and carbon monoxide gas called synthesis gas.

- Ammonia for fertilizers, explosives, plastics, and fibers
- Reduction of metal oxides to form pure metals

A shift converter converts carbon monoxide and water into more hydrogen gas and carbon dioxide.

- HCl for cleaning metals, acidifying oil wells, food processing, and the manufacture of many other chemicals
- Methanol, used to make formaldehyde, acetic acid, MTBE, and many other chemicals
Rates of Reaction for Reversible Reactions

\[
\text{CO(g)} + \text{H}_2\text{O(l)} \rightleftharpoons \text{CO}_2(g) + \text{H}_2(g)
\]
Changes in Concentrations for a Reversible Reaction

\[
\text{CO}(\text{g}) + \text{H}_2\text{O}(\text{l}) \rightleftharpoons \text{CO}_2(\text{g}) + \text{H}_2(\text{g})
\]

Concentrations

CO(g) + H₂O(l) \rightleftharpoons CO₂(g) + H₂(g)

Reactants

[CO] = [H₂O]

[CO₂] = [H₂]

Products

At dynamic equilibrium, concentrations are constant but not equal.

Time
Ski Shop Analogy for Equilibrium

Early morning

Initially, there are 20 skis in the shop.

- 5 pairs of skis leave per hour
- 0 pairs of skis return per hour

Later in the day

(Fewer skis available so fewer are rented per hour)

- 12 skis in the shop.

- 3 pairs of skis leave per hour
- 3 pairs of skis return per hour

Equilibrium

(No change in the number of skis in the shop and on the slope)
Equilibrium Constant Expression

\[
CH_4(g) + H_2O(g) \iff CO(g) + 3H_2(g)
\]

The coefficient before \(H_2\) is 3, so we raise the concentration or pressure to the third power.

\[
K_C = \frac{[CO] [H_2]^3}{[CH_4] [H_2O]} \quad K_P = \frac{P_{CO} P_{H_2}^3}{P_{CH_4} P_{H_2O}}
\]

\[X\] = moles \(X\) per liter

\(P_X\) = partial pressure \(X\)

\(pK = - \log K\)
Heterogeneous Equilibrium

\[P_4(s) + 6Cl_2(g) \rightleftharpoons 4PCl_3(l) \]

Concentration of gas doubles.
- Double \(\frac{\text{mol} \ Cl_2}{L} \)
- Concentrations of solid and liquid remain constant.
- Same \(\frac{\text{mol} \ P_4}{L} \)
- Same \(\frac{\text{mol} \ PCl_3}{L} \)

Half volume, with no change in moles

Heterogeneous Equilibrium

\[
K' = \frac{[PCl_3]^4}{[P_4][Cl_2]^6} \quad \frac{K'[P_4]}{[PCl_3]^4} = \frac{1}{[Cl_2]^6} = K_C
\]
Equilibrium Constant Expressions for Heterogeneous Equilibria

\[
\text{SO}_2(g) + 2\text{H}_2\text{S}(g) \rightleftharpoons 3\text{S}(s) + \text{H}_2\text{O}(g)
\]

The solid does not appear in the \(K_C \) and \(K_P \) expressions.

\[
K_C = \frac{[\text{H}_2\text{O}]}{[\text{SO}_2][\text{H}_2\text{S}]^2}
\]

\[
K_P = \frac{P_{\text{H}_2\text{O}}}{P_{\text{SO}_2}P_{\text{H}_2\text{S}}^2}
\]
Effect of Increased Concentration on Equilibrium

$$CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$$

Increased concentration of reactant for a system at equilibrium with $Rate_{\text{forward}} = Rate_{\text{reverse}}$

Increased $Rate_{\text{forward}}$

$Rate_{\text{forward}} > Rate_{\text{reverse}}$

System shifts toward products
Change in Rates When Reactant Added

\[\text{CO}(g) + \text{H}_2\text{O}(g) \rightleftharpoons \text{CO}_2(g) + \text{H}_2(g) \]

Addition of reactant causes increase in rate of forward reaction

New Dynamic Equilibrium

Increase in forward reaction leads to increase in reverse reaction
Ski Shop
Analogy 2

Before buying more skis
There are 12 skis in the shop.

12 skis in the shop.
3 pairs of skis on the slope
3 pairs of skis leave per hour
3 pairs of skis return per hour

Equilibrium (No change in the number of skis in the shop and on the slope)

Immediately after buying more skis
There are 22 skis in the shop. (With more skis in the shop, more are rented per hour.)

5 pairs of skis leave per hour
3 pairs of skis return per hour
3 pairs of skis on the slope

More skis leave than return, so the equilibrium is disrupted.

Later
There are 18 skis in the shop. (This is more skis than before the purchase but fewer than immediately after the purchase.)

4 pairs of skis leave per hour
4 pairs of skis return per hour
5 pairs of skis on the slope

New equilibrium (No change in the number of skis in the shop and on the slope)
Effect of Decreased Concentration on Equilibrium

\[\text{CO}(g) + \text{H}_2\text{O}(g) \rightleftharpoons \text{CO}_2(g) + \text{H}_2(g) \]

Decreased concentration of one product for a system at equilibrium with \(\text{Rate}_{\text{forward}} = \text{Rate}_{\text{reverse}} \)

\[\text{Decreased Rate}_{\text{reverse}} \]

\[\text{Rate}_{\text{forward}} > \text{Rate}_{\text{reverse}} \]

System shifts toward products
Change in Rates When Product Removed

$$CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$$

- **Rate$_{forward}$**: Decrease in reverse reaction leads to decrease in forward reaction.
- **New Dynamic Equilibrium**
- **CO$_2(g)$ removed**
- **Rate$_{reverse}$**
- **Removal of product causes decrease in rate of reverse reaction**

Time
Le Chatelier's Principle

• If a system at equilibrium is altered in a way that disrupts the equilibrium, the system will shift in such a way as to counter the change.
Chemical Equilibria in Aqueous Solutions

• Equilibrium concentrations important for many environmental problems
• There are also important non-equilibrium problems
 – ex. smog formation, stratospheric ozone depletion
 – chemical kinetics problems complicated
 – need to know reaction rates
 – involve many intermediate reactions and species.
• Equilibrium problems generally much easier to solve
Acid Dissociation Constant

• Weak acids have a reversible reaction with water to form hydronium ions (H$_3$O$^+$), which are often described as H$^+$.

 \[
 \text{HA(aq)} + \text{H}_2\text{O(l)} \rightleftharpoons \text{H}_3\text{O}^+(\text{aq}) + \text{A}^-\text{(aq)}
 \]
 \[
 \text{HA(aq)} \rightleftharpoons \text{H}^+(\text{aq}) + \text{A}^-\text{(aq)}
 \]

• The equilibrium constant for this reactions is called the acid dissociation constant, K_a.

 \[
 K_a = \frac{[\text{H}_3\text{O}^+][\text{A}^-]}{[\text{HA}]} \quad \text{or} \quad \frac{[\text{H}^+][\text{A}^-]}{[\text{HA}]}
 \]

• The can be described with pK_a.

 \[
 \text{p}K_a = -\log K_a
 \]
 \[
 K_a = 10^{-\text{p}K_a}
 \]
Dissociation of Water

- Pure water undergoes a reversible reaction in which both H_3O^+ (H$^+$) and OH$^-$ are generated.

$$2\text{H}_2\text{O}(l) \rightleftharpoons \text{H}_3\text{O}^+(aq) + \text{OH}^-(aq)$$

$$\text{H}_2\text{O}(l) \rightleftharpoons \text{H}^+(aq) + \text{OH}^-(aq)$$

- The equilibrium constant for this reaction is called the water dissociation constant.

$$K_w = [\text{H}^+][\text{OH}^-] = 1.01 \times 10^{-14} \text{ at } 25 \, ^\circ\text{C}$$

- Because every H$^+$ (H$_3$O$^+$) ion that forms is accompanied by the formation of an OH$^-$ ion, the concentrations of these ions in pure water are the same and can be calculated from K_w.

$$K_w = [\text{H}^+][\text{OH}^-] = (x)(x) = 1.01 \times 10^{-14}$$

$$x = [\text{H}^+] = [\text{OH}^-] = 1.01 \times 10^{-7} \text{ M}$$

$$\left(1.005 \times 10^{-7} \text{ M before rounding}\right)$$
Acidic and Basic Solutions

\[K_w = [H^+][OH^-] = 1.01 \times 10^{-14} \text{ at } 25 \, ^\circ\text{C} \]

- The equilibrium constant expression shows that the concentrations of H\(^+\) and OH\(^-\) in water are linked. As one increases, the other must decrease to keep the product of the concentrations equal to 1.01 \times 10^{-14}.
- If an acid, such as hydrochloric acid, is added to water, the concentration of the H\(^+\) goes up, and the concentration of the OH\(^-\) goes down, but the product of those concentrations remains the same. An acidic solution can be defined as a solution in which the [H\(^+\)] > [OH\(^-\)].
- If a base, such as sodium hydroxide, is added to water, the concentration of the OH\(^-\) goes up, and the concentration of the H\(^+\) goes down. A basic solution can be defined as a solution in which the [H\(^+\)] > [OH\(^-\)].
pH Calculations

• Acidity is measured with pH (from French “pouvoir hydrogene” or “power of hydrogen”)

 \[\text{pH} = -\log [H^+] \]

 \[[H^+] = \text{hydronium ion molarity} = 10^{-\text{pH}} \]

 \[K_w = [H^+][OH^-] \approx 10^{-14} \]

• Example: what is \([H^+]\) and \([OH^-]\) for a solution with a pH = 9?

 \[[H^+] = 10^{-\text{pH}} = 10^{-9} \text{ M} \]

 \[[OH^-] = K_w/[H^+] = 10^{-14}/10^{-9} = 10^{-5} \text{ M OH^-} \]
pH

- Acidic solutions have pH values less than 7, and the more acidic the solution is, the lower its pH.
- Basic solutions have pH values greater than 7, and the more basic the solution is, the higher its pH.
Strong Acid Calculation

Determine \([H^+]\), \([\text{OH}^-]\), and \(\text{pH}\) of a 0.025 M \(\text{HNO}_3\) solution at 25 °C.

Solution:

\[
K_w = [H^+][\text{OH}^-] = 1.01 \times 10^{-14} \text{ at 25 °C}
\]

– We assume that nitric acid, \(\text{HNO}_3\)(aq), like all strong acids, is completely ionized in water. Thus the concentration of \(H^+\) is equal to the \(\text{HNO}_3\) concentration.

\[
[H^+] = 0.025 \text{ M } H^+
\]

\[
\text{pH} = -\log \text{pH} = -\log (0.025) = 1.60
\]

– When can use the \(K_w\) equation to calculate \([\text{OH}^-]\).

\[
[\text{OH}^-] = \frac{K_w}{[H^+]} = \frac{1.01 \times 10^{-14}}{0.025}
\]

\[
= 4.0 \times 10^{-13} \text{ M OH}^-
\]

Note that the \([\text{OH}^-]\) is not zero, even in a dilute acid solution.