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Reservoirs

• Natural systems can be characterized by the 
transport or transformation of matter (e.g. water, 
gases, nutrients, toxics), energy, and organisms 
in and out of a reservoir.

• Reservoirs can be physical (e.g. a human body, 
the atmosphere, ocean mixed layer), chemical 
(different chemical species), or biological (e.g. 
populations, live biomass, dead organic matter)

• Transport/transformation can involve bulk 
movement of matter, diffusion, convection, 
conduction, radiation, chemical or nuclear 
reactions, phase changes, births and deaths, etc.



Box Models
• We make a simple model of a system by 

representing the reservoirs with a “box” and 
the transport/transformation with arrows.

• We usually assume the box is well-mixed, 
and we usually are not concerned with 
internal details.

• Stock = the amount of stuff (matter, energy, 
electric charge, chemical species, organisms, 
pollutants, etc.) in the reservoir

• Flows = the amount of stuff flowing into and 
out of the reservoir as a function of time

Stock, S
Outflow, FoutInflow, Fin



Why Use Box Models?
To understand or predict:
• Concentrations of pollutants in various 

environmental reservoirs as a function of 
time: e.g. water pollution, outdoor/ indoor air 
pollution

• Concentrations of toxic substance in organs 
after inhalation or ingestion; setting standards 
for toxic exposure or intake

• Population dynamics, predator-prey and food-
chain models, fisheries, wildlife management

• Biogeochemical cycles and climate dynamics 
(nutrients, energy, air, trace gases, water)
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How Box Models Work

Fin < Fout S/t  < 0

Situation 2: Non-equilibrium 
Fin > Fout S/t  > 0

Situation 1: Equilibrium
Fin = Fout S/t  = 0

Basic rule of box models:
change in stock over time = inflow – outflow
S/t = Fin – Fout



Equilibrium: The Balance
• In many problems in environmental science, it is 

reasonable  to start with the assumption that a 
particular stock is in equilibrium, meaning that the 
stock does not change over time.  In this case, we 
have

FIN – FOUT = 0  FIN = FOUT = F

• Three types of equilibria 
– static equilibrium:  FIN = 0, FOUT = 0 (nothing is happening)

– steady state: FIN = FOUT = constant (nothing is changing)

– dynamic equilibrium:  FIN(t) = FOUT(t) (the changes balance)

We can also make a further distinction between stable equilibria (which 
tend to persist) and unstable equilibria (which are transitory).



Equilibrium: Three Questions to Ask 
Yourself

(1) If this stock is in equilibrium, what is implied about the 
flows involved? 

e.g., if the stock of water in the atmosphere is in 
equilibrium, Fin = Fout, then precipitation must equal 
evaporation.

(2) If the flows are not in balance, i.e., FIN ≠ FOUT , how will 
this manifest itself in the stock?

e.g., what happens to a lake if the water flows in and out 
of the lake are imbalanced over time,  e.g. FOUT > FIN ?

(3) Over what time period is this stock in equilibrium, and 
over what time period is it not in equilibrium?

e.g. the stock of water in this lake is currently in balance 
year to year, but it changes from day to day or month to 
month or season to season, and it also changes over 
decades and centuries.



Stock, Flow, and Residence Time
In equilibrium, inflows balance outflows, so stock S doesn’t 
change 

∆S/∆t = FIN – FOUT = 0      S = constant

The flow is the same whether it is inflow or outflow:

FIN = FOUT = F   

The equilibrium stock S can be calculated by the flow F 
times the residence time T:  

equilibrium stock  =  flow   residence time

S = F • T

The residence time is the average length of time that the 
substance spends in the box.



Example
• Consider the stock of students in a four-year college that in which 1,000 

freshman per year enroll and 1,000 seniors per year graduate (nobody 
flunks out or withdraws!)  Thus   

FIN = FOUT = F = 1,000 students/yr

• So the stock S (student population at the college) is constant.  How big 
is it? Remember we know

equilibrium stock  =  flow  x  residence time   (S = FT)

• If no one flunks or withdraws, the residence time is 4 years. So we can 
calculate the stock to be

S = FT = 1,000 students/yr  4 yr = 4,000 students

• If one knows any two of the three quantities -- S, F, T -- then one can 
always calculate the third:    S = FT,    F = S/T,    T = S/F



Stocks and Flows of Fresh Water

Stocks
total freshwater = 40,000,000 km3

ice = 30,000,000 km3

groundwater = 10,000,000 km3

lakes =    100,000 km3

atmospheric water = 10,000 km3

river channels = 1,000 km3

These are order of magnitude; see Cow VI.2 for more 
precise values

Flows:
annual rainfall = 500,000 km3/y
annual runoff = 40,000 km3/y
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Hydrologic cycle box model: flows
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from oceans
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precipitation 
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runoff from land
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Residence Time: 
Ex. Water in the Atmosphere

• What is the mean residence time of water in the 
atmosphere? 

(using better numbers (see COW), T ~ 9 days)
• Significance?

– Wash-out period for the atmosphere
– Deposition of water-soluble pollutants



Residence Time: Water in the 
Ocean

• Mean residence time for oceans?
• Stock / Flow = T, which gives

• Mean residence time for mixed layer?

(Note than this is via exchange with atmosphere and land 
only; there is another exchange between mixed layer and 
deep ocean, with an analogous calculation)



Mono Lake and the Use of 
Box Models in 

Environmental Science



Mono Lake

• Mono Lake is a high-altitude basin lake (i.e. no 
surface outflow, high salinity) on the east side of 
the Sierra Nevada.

• Dissolved salts in the runoff remain in the lake 
and raise the water's pH levels and salt 
concentration. 

• Its brine shrimp and islands provide important 
habitat for two million migratory birds per year.



Mono Lake
• Starting in the 1940s, water diversions to Los Angeles led to a 50 

foot decrease in water level.
• By 1982 the lake was reduced to 37,688 acres (15,252 ha) 

having lost 31 percent of its 1941 surface area. As a result 
alkaline sands and once-submerged tufa towers became 
exposed and Negit Island became land-bridged, exposing 
the nests of gulls to predators (chiefly coyotes) and forcing 
the breeding colony to abandon the site.

• Public outcry finally forced LA to restore the flows ca. 1990.
• Before 1941, average salinity was approximately 50 grams per 

liter (g/l) (compared to a value of 31.5 g/l for the world's oceans). 
In January 1982, when the lake reached its lowest level, the 
salinity had nearly doubled to 99 g/l. In 2002, it was measured at 
78 g/l and is expected to stabilize at an average 69 g/l as the lake 
replenishes over the next 20 years.



Mono Lake
• Elevation = 6417 ft
• Watershed area = 432,000 acres (432 kac)

– 2.47 acre = 1 hectare (ha) = 104 m2

• Lake area in 1940 = 55,000 acres (55 kac)
• Lake volume in 1940 = 4300 kac-ft
• Lake volume in 1990 = 2200 kac-ft

1 acre-foot = 1233 m3



Mono Lake

• Box models were crucial in helping Mono Lake 
advocates make their case.

• Box model questions:
– What were the steady-state flows in 1940, 

before the diversions began?
– What was the change in lake area, 1940 to 

1990?
– What would happen if the diversions 

continued?



Mono Lake Watershed



Mono Lake

PrecipitationEvaporation

Stream Runoff

Groundwater out
Groundwater in

Box Model of Mono Lake Hydrology

Fin = runoff inflow + groundwater inflow + precipitation
Fout = groundwater outflow + evaporation



Mono Lake Flows

Measured values for Mono Lake flows before 1940, with lake 
in quasi-equilibrium (Fin  Fout):
Fin = stream inflow + groundwater inflow + precipitation

– Groundwater inflow = 40 kac-ft/y
– Stream inflow = we will estimate 
– Precipitation = 8 in/y (we need to convert to kac-ft/y)

Fout = groundwater outflow + evaporation
– Groundwater outflow = 25 kac-ft/y
– Evaporation = ?

Task: estimate stream inflow from data for Mono Lake 
watershed, then use box model to estimate evaporation.



Ex. Estimating Runoff from Mono 
Basin

• For any watershed (drainage basin): Fin = Fout
Precip = Evap + Runoff + Groundwater Recharge
P = E + R + G  R = P - E - G
Measured average annual values for Mono Basin:

• P = 21 in/y
• E = 8.4 in/y
• G = 7.4 in/y
• R = 21 - 8.4 - 7.4 = 5.2 in/y = 0.43 ft/y
• Watershed area (minus lake) = 432 kac – 55 kac = 377 kac

 Runoff = (377 kac)(0.43 ft/y) = 160 kac-ft/y

Measured flow into lake ca. 1940 ~150 kac-ft/y



Mono Lake

V = 4,300 kac-ft

A = 55 kac

Precipitation
8 in/y

Evaporation
? kac-ft/y

Stream Runoff
150 kac-ft/y

Rush, Lee Vining, Mill creeks Groundwater out
25 kac-ft/yGroundwater in

40 kac-ft/y

Ex. Using Box Model to Calculate 
Evaporation from Mono Lake

Fin = Stream + Precip + Groundin = 150 + 40 + 37 = 227 kac-ft/yr

In equilibrium, Fin = Fout = Evap + Groundout

Evap = Fin - Groundout = 227 - 25 = 202 kac-ft/y  



Mono Lake

V = 4,300 kac-ft

A = 55 kac

Precipitation
37 kac-ft/y

Evaporation
202 kac-ft/y

Stream Runoff
150 kac-ft/y

Rush, Lee Vining, Mill creeks Groundwater out
25 kac-ft/yGroundwater in

40 kac-ft/y

Ex. Using Box Model to Calculate 
Evaporation from Mono Lake

Equilibrium box model with flows in balance ca 1940.



Changes in Mono Lake

R1940

R1990

top view of lake

Calculate the 1940 average radius of 
Mono Lake in feet. (The 1940 area of 
Mono Lake was 55 kiloacres. There 
are 4840 yd2 per acre.)



R1940
R1990

Calculate the 1940 average radius of Mono Lake in feet. 
(The 1940 area of Mono Lake was 55 kiloacres. There are 

4840 yd2 per acre.)



What was change in area of lake?

If the surface of the lake dropped 50 ft from 1940 to 1990, 
calculate Mono Lake’s change in radius, its 1990 surface area 
in Gft2, and the change in area between 1940 and 1990. 



If the surface of the lake dropped 50 ft from 1940 to 
1990, calculate Mono Lake’s change in radius, its 1990 
surface area in Gft2, and the change in area between 

1940 and 1990. 



Box Models for Different Situations

• What is the basic math behind box models?
• What kinds of box model are frequently used in 

environmental science?
• How can the following situations be analyzed 

mathematically with box models?
– population growth
– radioactive decay
– greenhouse gas emissions
– depletion of oil stocks
– pollution building up in a lake



General Solution to Box 
Models

1. Draw box model, label stocks and flows

2. Set up differential equation for each box 
expressing the rate of change of the stock

3. Solve for S(t) by integrating the differential 
equation, or in lieu of integrating, use the pre-
integrated solutions given in class for S(t).  The 
trick here is to recognize which type of box model 
calls for which type of solution.

dS
dt

 Fin Fout



Equations for Different 
Situations

• Steady State

S(t) = S0

• Fin - Fout = constant

S(t) = S0 + Ft

• Exponential Growth of Stocks 

S(t) = S0ert

• Exponential decline (decay) of Stocks 

S(t) = S0e-rt



Equations for Different 
Situations

• One flow constant and the other proportional to stock 
(e.g. constant inflow, and an outflow proportional to 
stock)

• Exponential increase in inflow

• Exponential increase in outflow

S(t) S0 
F0

r
(ert 1)

S(t) S0 
F0

r
(ert 1)



Case A: Stock is in Steady State

Fin = Fout = F

S(t) = S0 (i.e. no change from initial value)

Residence time T is defined for steady state:
T = S/F



Stock is in Steady State: S(t) = S0
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Case B: Fin - Fout = constant 

• If the stock is not in a steady state, our 
calculations involve different equations.

• The simplest case is when the difference 
between Fin and Fout is constant:

F = Fin – Fout

S(t) = S0 + Ft



Case B: Calculation

• Consider a water storage tank that you use to 
irrigate your vineyard. It is 20 ft high and 20 ft
in diameter and has a maximum capacity of 
4.7  104 gallons of water. When you check 
the water level, you find that it contains 1.2 
104 gallons, so you decide to fill it up. You 
can add 80 gal/min, but you know that you 
will be drawing out about 60 gal/min to 
irrigate your grape vines. If you start the 
addition of water now and come back the 
next day at the same time, will your tank have 
overflowed? 



Fin - Fout = constant: S(t) = S0+∆Ft 
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Ex. S0 = 0, ∆F = 20



Fin - Fout = constant: S(t) = S0+∆Ft 
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Ex. S0 = 200, ∆F = -20



Exponential Growth – Fixed Percentage per 
Year

• Exponential growth when the increase in some quantity 
is proportional to the amount currently present.

• If fixed percentage per year.

N1 = N0 + rN0 = N0(1 + r)   

N2 = N1(1 + r) = N0(1 + r)(1 + r)   

N3 = N2(1 + r) = N0(1 + r)(1 + r)(1 + r)   etc.

or      N(t) = N0(1 + r)t

N(t) = amount at time t
N0 = initial amount
r = rate
t = time



Example

• If you borrow $100 at a 10% fixed rate, and if 
you repay the loan in four years, how much 
will you owe?

N(t) = N0(1 + r)t

N(t) = $100(1 + 0.10)4

N(t) = $146



Exponential Growth – Smooth, 
Continuous

• If we assume that the rate of change is 
smooth and continuous, the equation is

N(t) = N0ert

N(t) = amount at time t
N0 = initial amount
r = rate
t = time



Continuous Exponential Growth



Logarithms

• The logarithm of a number is the exponent by which a 
fixed number, the base, has to be raised to produce that 
number. The log base a of a number y is the power of a
that yields y.

loga y = loga ax = x e.g log10 1000 = log10 103 = 3 

log10 is commonly described as just log.

Loge is called the natural log and is commonly described as ln.

e = 2.7182818284590452353602874713526624977572...

loga a = 1 e.g. log 10 = log 101 = 1   or   ln e = ln e1 = 1

Loga (bc) = logab + logac

Loga (b÷c) = logab – logac

Loga bc = c logab e.g. ln 2-3 = -3 ln 2 



Doubling Time



Case C: Exponential Growth of Stocks

• If you put $100 in an account with a 0.84% 
annual percentage rate, how much money 
will you have after 10 years? 

S(t) = S0ert = $100 e(0.0084 1/yr 10 yr) = $108.76

• How long will it take to double your money?

T1/2 = 0.693/r = 0.693/(0.0084 1/y) = 82 years  



Exponential Growth of Stocks: S(t) = S0ert
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Ex. S0=1, r=0.1/y



Exponential Decline of Stocks: S(t) = S0e-rt

0

50

100

150

0 10 20 30 40 50

ST
O

C
K

TIME
Ex. S0=150, r=0.1/y



Exponential Decline and Half-Life



Exponential Decline of Stocks 
Example

• Iodine-131 has a half-life of 8.0197 days. If we 
start with 37 GBq (or 1 curie) of I-131, how 
much is left after 14 days? 
– The becquerel (symbol Bq) (pronounced: 

'be-kə-rel) is the SI-derived unit of 
radioactivity. One Bq is defined as the 
activity of a quantity of radioactive material 
in which one nucleus decays per second. 
The Bq unit is therefore equivalent to an 
inverse second, s−1.

– The curie is a common non-SI unit. It is now 
defined as 37 GBq. 



Iodine-131 has a half-life of 8.0197 days. If we 
start with 37 GBq (or 1 curie) of I-131, how 
much is left after 14 days?



Measuring CO2 from fossil fuels 
by Measuring 14CO2/12CO2 Ratio

• About one in a trillion CO2 molecules naturally 
contain 14C, but the carbon locked up in fossil 
fuels, such as coal and oil has none. 

• Because the half-life of 14C is 5730 years, the 
carbon-14 in fossil fuels decayed to 14N millions of 
years ago

14
6C    14

7N  +  0-1e
• Therefore, as the amount of CO2 in the 

atmosphere from fossil fuels rises, the ratio of 
14CO2/12CO2 decreases in a measurable way.



Measuring CO2 from fossil fuels 
by Measuring 14CO2/12CO2 Ratio

• Monitoring stations in the Swiss Alps and in 
Antarctica found that the 14CO2/12CO2 is now 
about 0.5% lower in the Northern Hemisphere 
than in the Southern 

• Reversal since preindustrial days…tree ring 
records show that the Southern Hemisphere had 
less 14CO2 because upwelling of deep waters in 
the southern oceans brought radiocarbon-
depleted CO2 to the surface.  



Measuring CO2 from fossil fuels 
by Measuring 14CO2/12CO2 Ratio

• Uncertainties in estimates of fossil-fuel emissions 
from 14CO2 are still large, because accurate 
modeling depends on knowing all possible 
sources of both radioactive and nonradioactive 
CO2. 

• One confounding factor is emissions from nuclear 
power plants, which generate a significant amount 
of 14C in regions where nuclear plants are 
concentrated, offsetting at least 20% of the 
reduction in 14CO2 due to fossil fuels. 



Case D. One Flow Constant, One Flow is 
Proportional to Stock

If there is a constant inflow, and an outflow 
proportional to stock:



One Flow Constant, One Flow is 
Proportional to Stock (cont.) 

• Note two things about this formula
(1) t = 0, S(t) = S0
(2) t = , S(t) = F0/r
Thus S approaches F0/r asymptotically, either from 
above or below depending on the relative values of 
S0 and F0/r

• This is the solution to problems such as pollution 
buildup in a lake (see COW 114-115) where pollution 
flows in at a constant rate, but flows out in proportion 
to its concentration in the lake (i.e. Fout is directly 
proportional to the stock of pollutant, hence an 
exponential term)

S(t) 
rS0 F0 

r
ert 

F0

r
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Ex. S0=20, F0=10/y, r=0.1/y
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Case E. Exponential Growth of Flows

If the inflow increases exponentially: 



If the outflow increases exponentially: 



dS
dt

 F0e
rt S(t) S0 

F0

r
(ert 1)

S(t) S0 
F0

r
(ert 1)

dS
dt

 F0e
rt
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Case E (Cont.)

To find the time T it takes for the total stock to 
be used up, e.g. all remaining oil to be 
consumed:



Ex. Exponentially Growing Oil 
Depletion

• How long to consume a total amount of oil S?

• Suppose we have a 100-y supply of oil at 
current rate of consumption (S0/F0 = 100 y), 
but consumption is growing 5%/y (r = 0.05/y)

T  y
0.05








ln

0.05
y









 100 y  1









 

ln 6 
0.05

y










 36 y

T 
1
r

ln(rS0

F0

1)
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Observation on Exponential 
Growth of Flows

• If consumption rate is growing exponentially, 
total consumption in the next doubling time 
T2X equals all previous consumption:

 
 

2 X
0.69rT 0 r0

r
2X

00

F e eS 0 to T e 1 2 1r 1FS  to 0 1 0 1e e
r

 
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 



    
   

   
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In this chart, consumption is growing at 7%/y 
(doubling time = 10 y)

Consumption in the next ten years (blue bars) 
equals total consumption over all previous years



Goals 

• To estimate the mass of carbon released in 
the future

• To clarify how the release of carbon can be 
minimized



Steps to Meet Goals

• Identify the most important general factors that 
effect carbon release.
– Population
– Affluence
– Energy efficiency 
– Carbon efficiency

• Attempt to quantify each factor.
– P = population (pers)
– GDP/P = per capita economic activity ($/pers)
– E/GDP = energy intensity of economic activity (GJ/$)
– C/E = carbon intensity of energy supply (kg/GJ)



POPULATION



History of Earth in one year:
Carl Sagan’s “Cosmic Calendar”
Jan 1, 12:00 AM: Formation of Earth
Mar 27, 6:30 AM: Origin of life
Jul 17, 4:00 PM: First eukaryotes
Nov 18, 8:15 PM: Cambrian Explosion
Dec 13, 3:50 PM: Dinosaurs appear
Dec 21, 3:10 AM: Flowering plants appear
Dec 25, 5:00 AM: Primates appear
Dec 26, 7:20 PM: Dinosaurs go extinct
Dec 31, 7:12 PM: Genus Homo appears
Dec 31, 11:36 PM: Homo sapiens appears
Dec 31, 11:58:50 PM: Invention of agriculture
Dec 31, 11:59:23 PM: Invention of writing
Dec 31, 11:59:59 PM: First spaceflight

Humans 
are very 
recent 
arrivals!



History of Earth in one year:
Carl Sagan’s “Cosmic Calendar”



* UNFPA United 
Nations Population 
Fund estimate 
31.10.2011

History of Human Population
Population

Year Billion
1800 1
1927 2
1960 3
1974 4
1987 5
1999 6
2011* 7

As of October, 2, 2012, the world human population is 
estimated to be 7,043,107,338 by the United States Census 
Bureau and over 7 billion by the United Nations.



Growth of Human Population

Rank Country Population
2010

Population
1990

Growth (%)
1990-2010

World 6,895,889,000 5,306,425,000 30.0%

1 China 1,341,335,000 1,145,195,000 17.1%

2 India 1,224,614,000 873,785,000 40.2%

3 United States 310,384,000 253,339,000 22.5%

4 Indonesia 239,871,000 184,346,000 30.1%
5 Brazil 194,946,000 149,650,000 30.3%
6 Pakistan 173,593,000 111,845,000 55.3%
7 Nigeria 158,423,000 97,552,000 62.4%
8 Bangladesh 148,692,000 105,256,000 41.3%
9 Russia 142,958,000 148,244,000 -3.6%
10 Japan 128,057,000 122,251,000 4.7%

According to United Nations population statistics, the world population 
grew by 30%, or 1.6 billion people, between 1990 and 2010.

http://esa.un.org/unpd/wpp/unpp/Panel_profiles.htm



Change in Population Growth Rate



Population Math: Exponential Growth Model

Time

Po
pu

la
tio

nS(t) = S0ert

Td = 0.693/r
• Somalia’s population is about 10 million. If their annual 

birth rate is 5% and their annual death rate is 2%, the net 
rate of change is 3%. If we assume that their population 
growth is exponential, we can calculate their approximate 
population in ten year and the doubling time for their 
population

• P10 = 107 e0.03 1/y(10y) = 13 million

• Td = 0.693/0.03 = 23 years

• Problem: Population can’t continue to grow exponentially. 
There are limits to growth.



Carrying Capacity (K)

• Carrying capacity (K) is the number of 
individuals an environment can support 
without significant negative impacts to the 
given organism and its environment.

• Most estimates for the human carrying 
capacity of Earth are between 4 billion and 16 
billion. 

http://www.un.org/esa/population/publications/wpm/wpm2001.pdf



Population Math

where S = number of individuals in population
S0 = initial size of population
r = net population growth rate (per individual per unit time)
K = carrying capacity (maximum possible population)

Note: Exponential and logistic growth are simple models of 
population.  Actual demographic analysis uses linear algebra 
(matrix math).  See COW, 216-223.

Case F: Logistic growth model:

Time

Carrying capacity

Po
pu

la
tio

nS(t)  KS0e
rt

K  S0 (ert 1)



World Population Estimated
• World population 

estimates from 
1800 to 2100, 
based on UN 2010 
projections (red, 
orange, green) 
and US Census 
Bureau historical 
estimates (black). 
According to the 
highest estimate, 
the world 
population may 
rise to 16 billion by 
2100; according to 
the lowest 
estimate, it may 
decline to only 6 
billion.



The demographic transition
Population growth rate = birth rate - death rate

Stage of transition Stages
1. Pre-industrial society.

Deaths high, births high.
Stable population.

2. Developing society.
Deaths decrease, births high.
Growing population.

3. Transition.
Deaths low, births decrease.
Growing population.

4. Developed society.
Deaths low, births low.
Stable population.

Source: http://en.wikipedia.org



Factors affecting population growth

• Food supply
• Hygiene, sanitation
• Medical care
• Religious beliefs
• Epidemics
• Econ development
• Education
• Status of women
• Contraceptives
• Gov’t incentives
• Em- or immigration

Births Deaths Growth
↑ ↓ ↑

↓ ↑
↓ ↑

↑(if at all) ↑
↑ ↓

↓ ↓ ↓
↓ ↓  ↓
↓ ↓
↓ ↓
↑ or     ↓ either

n/a n/a either
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Where is the world’s population?

North America: 540M (8%) Africa: 1000M (14%)
Latin America: 580M (8%) Asia: 4100M (59%)
Europe: 740M (11%) Oceania:     30M (0.4%)



Where is the world’s population growth?

Examples of low growth rates Examples of high growth rates
Italy 0.07% per year India 1.58% per year
United States 0.88% per year Nigeria 2.02% per year
Argentina 1.07% per year DR Congo 3.22% per year



IPAT



Quantifying human impacts: using 
the IPAT identity to build scenarios

• The IPATmethod (Ehrlich & Holdren, 1972) is a simple but 
useful model for building scenarios of environmental impact:

I  =  P • A • T
Impact  = Population  Affluence  Technology 

= (persons)  (GDP/person)  (impact/GDP)
• “Technology” refers to the technical efficiency of economic 

activity with regard to environmental impacts ‐‐ the more 
efficient the “technology,” the lower the impact per $ of GDP 

• Key Observation: Impact increases as the product – not the 
sum – of the three contributing factors P, A, T

• Example: If population, affluence, and technology all double, 
the impacts will be 2  2  2 = 8 times their initial magnitude!!



Sample IPAT calculation
Estimate the amount of CO2 emitted annually by 
personal vehicles in the United States.

Population: 310,000,000 persons
Affluence: 11,000 vehicle-miles / person · year
Technology: 0.4 kg CO2 / vehicle-mile

3.1108 people   1.1104 vehicle miles
person  year











0.4 kg CO2

vehicle mile








 

1.4 × 109 t CO2 per year



Sample IPAT Calculation (cont.)

Can also omit population to calculate per capita impact.

In Kenya:

...so the overall impact 
is much smaller.

3.1108 people   1.1104 vehicle miles
person  year











0.4 kg CO2

vehicle mile








 

This number 
is much
smaller.

This number 
is larger.

This number 
is much
smaller.



Implications of IPAT
In general, three factors determine the impact of humans 
on their environment:

1. Population size

2. Consumption / affluence

3. Technology

Therefore, to control environmental impacts, we can:

1. Control population growth

2. Control consumption

3. Improve technologies

All these approaches are used in environmental policy.



Carbon Emissions Calculation

Impacts can be disaggregated into more than 3 drivers, e.g.
C  =  P  x  GDP/P  x  E/GDP  x  C / E

• C = carbon emissions (kg)

• P = population (pers)

• GDP/P = per capita economic activity ($/pers)

• E/GDP = energy intensity of economic activity (GJ/$)

• C/E = carbon intensity of energy supply (kg/GJ)

Example In the year 2000:

• P = 6.1 billion persons

• GDP/P  = $7400/pers

• E/GDP  = 0.01 GJ/$

• C/E  = 14 kgC/GJ

Calculate the kg and Gt of carbon emissions.



Ex. CO2 Emissions Calculation

Calculate the kg and Gt of carbon emissions.



But what if these quantities are 
changing?

• Annual growth is not exponential growth, but 
annual growth can be represented approximately 
as “exponential growth” when the growth rate is 
small (< ~10%/y) 

• The total rate of growth for the output can be 
viewed as the sum of the growth rates for 
population, GDP/pers, E/GDP, and C/E. 



Ex. Carbon Emissions Growth Rate

• According to the World Bank the world population (P) is 
growing at about 1.2% per year and is gradually declining 
over time. 

• GDP per person (g) worldwide is growing at about 1.5% 
per year.

• Energy intensity of GDP (i) was declining worldwide for 
decades at about -1% per year…getting 1% more efficient

• Carbon intensity of energy use (c) was declining about -
0.3% per year

• Carbon emissions growth rate  based on this model:

r = 1.2% + 1.5% - 1.0% - 0.3% = 1.4%/y

C(t) = C0ert = C0e0.014t



Ex. Carbon Emissions Growth Rate

• If the anthropogenic carbon released into the 
atmosphere now is 9 Gt per year, if we assume 
exponential growth and unchanged rates of change for 
population, GDP/pers, GJ/$, and kg C/ GJ, what would 
be the mass of carbon released into to atmosphere be 
in ten years? 

C(t) = C0e0.014t = 9 Gt e0.014 1/y(10 y)   10 Gt

What’s the doubling time?

Td = 0.693/0.014  50 years

• What do the numbers tell us? Why should we be 
careful in applying these numbers? 


